Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plant vacuoles are essential and dynamic organelles, and mechanisms of vacuole biogenesis and fusion are not well characterized. We recently demonstrated that Wortmannin, an inhibitor of Phosphatidylinositol 3-Kinase (PI3K), induces the fusion of plant vacuoles both in roots of itt3/vti11 mutant alleles and in guard cells of wild type Arabidopsis and Fava bean. Here we used Fluorescence Recovery After Photobleaching (FRAP) to demonstrate that the vacuoles in itt3/vti11 are independent organelles. Furthermore, we used fluorescent protein reporters that bind specifically to Phosphatidylinositol 3-Phosphate (PtdIns(3)P) or PtdIns(4)P to show that Wortmannin treatments that induce the fusion of vti11 vacuoles result in the loss of PtdIns(3)P from cellular membranes. These results provided supporting evidence for a critical role of PtdIns(3)P in vacuole fusion in roots and guard cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4623060 | PMC |
http://dx.doi.org/10.4161/psb.29783 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!