We demonstrate herein the variation in viscoelastic properties of supramolecular hydrogels (SMGs) composed of two amphiphiles, N-Palmitoyl-Gly-His (PalGH) and sodium palmitate (PalNa). PalGH molecules in water form lamellar-like assemblies, which stack into sheet-shaped aggregates, resulting in the evolution of three-dimensional network structures. Once PalNa is added to PalGH, the alkyl groups of PalNa incorporate themselves into the hydrophobic cores of PalGH lamellar-like assemblies, resulting in a change in the assembly from lamellar-like to fibrous micelle-like. Consequently, sheet-shaped aggregates turn into flexible fibrils, which form bundles, resulting in network structures. Mixed hydrogel network structures differ in morphology from those in homogenous PalGH and PalNa hydrogels. Changes in the network structure eventually alter the bulk viscoelastic properties of hydrogels. These results demonstrate that the viscoelastic properties of supramolecular hydrogels can be tuned by controlling the aggregation states.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp04395bDOI Listing

Publication Analysis

Top Keywords

properties supramolecular
12
supramolecular hydrogels
12
viscoelastic properties
12
network structures
12
palna palgh
8
lamellar-like assemblies
8
sheet-shaped aggregates
8
hydrogels
5
palgh
5
modulation physical
4

Similar Publications

A Potent Bis-Heteroleptic Ruthenium(II) Complex-Based Chalcogen Bonding Receptor for Selective Sensing of Phosphates.

Inorg Chem

January 2025

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India.

The incorporation of a selenoimidazolium-based chalcogen bond (ChB) donor into a bis-heteroleptic Ru(II) complex (Ru-Se) has been designed for the first time to explore its anion-sensing properties and understand its selectivity to specific classes of anions. Photophysical studies demonstrate the receptor's selectivity toward phosphates, while H NMR displays its ability to recognize both I and HPO among the different halides and oxoanions through ChB interaction in CHCN and dimethyl sulfoxide- solvents, respectively. Additionally, microscopic studies such as DLS and TEM reveal that the selective turn-on sensing of HPO and HPO compared to I is driven by supramolecular aggregation behavior.

View Article and Find Full Text PDF

A novel isopthalamide based receptor HL2 featuring two p-benzoic acid units has been synthesised and its anion binding properties analysed by H-NMR spectroscopy in DMSO-d/0.5 % HO. As expected, in the presence of tetrabutylammonium (TBA) fluoride the deprotonation of the carboxylic acid moieties was observed.

View Article and Find Full Text PDF

Bio-Inspired Highly Stretchable and Ultrafast Autonomous Self-Healing Supramolecular Hydrogel for Multifunctional Durable Self-Powered Wearable Devices.

Small

January 2025

Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.

View Article and Find Full Text PDF

Noncovalent forces have a significant impact on photophysical properties, and the flexible employment of weak forces facilitates the design of novel luminescent materials with a variety of applications. The arene-perfluoroarene (AP) force, as one type of π-hole/π interaction, shows unique directionality, involving an electron-deficient π-hole interacting with a π-electron-rich region, facilitating precise orientation and stabilization in supramolecular structures. Here we present an amination engineering protocol to build a perfluoroarene library based on an octafluoronaphthalene skeleton with various steric and electronic properties.

View Article and Find Full Text PDF

Bioinspired complex cellulose nanorod-architectures: A model for dual-responsive smart carriers.

Carbohydr Polym

March 2025

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada. Electronic address:

The synergy between nanomaterials as solid supports and supramolecular concepts has resulted in nanomaterials with hierarchical structure and enhanced functionality. Herein, we developed and investigated innovative supramolecular functionalities arising from the synergy between organic moieties and the preexisting nanoscale soft material backbones. Based on these complex molecular nano-architectures, a new nanorod carbohydrate polymer carrier was designed with bifunctional hairy nanocellulose (BHNC) to reveal dual-responsive advanced drug delivery (ADD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!