Antarctic phototrophs are challenged by extreme temperatures, ice cover, nutrient limitation, and prolonged periods of darkness. Yet this environment may also provide niche opportunities for phytoplankton utilizing alternative nutritional modes. Mixotrophy, the combination of photosynthesis and particle ingestion, has been proposed as a mechanism for some phytoplankton to contend with the adverse conditions of the Antarctic. We conducted feeding experiments using fluorescent bacteria-sized tracers to compare the effects of light and nutrients on bacterivory rates in three Antarctic marine photosynthetic nanoflagellates representing two evolutionary lineages: Cryptophyceae (Geminigera cryophila) and Prasinophyceae (Pyramimonas tychotreta and Mantoniella antarctica). Only G. cryophila had previously been identified as mixotrophic. We also measured photoautotrophic abilities over a range of light intensities (P vs. I) and used dark survival experiments to assess cell population dynamics in the absence of light. Feeding behavior in these three nanoflagellates was affected by either light, nutrient levels, or a combination of both factors in a species-specific manner that was not conserved by evolutionary lineage. The different responses to environmental factors by these mixotrophs supported the idea of tradeoffs in the use of phagotrophy and phototrophy for growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-014-0543-x | DOI Listing |
Alzheimers Dement
December 2024
The University of Texas Health Science Center at Houston, Houston, TX, USA.
Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.
Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.
Alzheimers Dement
December 2024
Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.
Background: Alzheimer's Disease (AD) poses a substantial global health burden, necessitating innovative therapeutic strategies. This study investigates the neuroprotective potential of a chrysin-loaded Nanostructured Lipid Carrier (NLC) drug delivery system in AD management. Employing the high-pressure homogenization method, chrysin-loaded NLCs were meticulously formulated to optimize drug delivery efficiency.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran (Islamic Republic of).
Background: Microbiota of the distal part of the intestine produces Urolithin A (Uro A) as a derivative of ellagitannins hydrolysis. Recently, the mitophagy, anti-inflammatory, and antioxidant properties of Uro A have focused more attention on its probable beneficial effects on neurodegenerative states. The purpose of this research was to study the impact of Uro A on the histopathology of the cerebellum in a rat model of streptozotocin-induced Alzheimer's disease.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: TREM2 signaling has been implicated in Alzheimer's Disease (AD). TREM2 regulates microglial states and functions such as phagocytosis. The most prominent TREM signaling adapter is DAP12, encoded by TYROBP.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
The light-harvesting pigment-protein complex II (LHCII) from plants can be used as a component for biohybrid photovoltaic devices, acting as a photosensitizer to increase the photocurrent generated when devices are illuminated with sunlight. LHCII is effective at photon absorption in the red and blue regions of the visible spectrum, however, it has low absorption in the green region (550-650 nm). Previous studies have shown that synthetic chromophores can be used to fill this spectral gap and transfer additional energy to LHCII, but it was uncertain whether this would translate into an improved performance for photovoltaics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!