AI Article Synopsis

  • Researchers demonstrated that freshly ripened clementine mandarin can effectively reduce prochiral ketones in water, achieving high enantioselectivities (95%, 99%, and 86% ee for indanone, tetralone, and thiochromanone, respectively).
  • When comparing biocatalytic and metal-catalyzed methods, chiral ruthenium catalysts also showed promising results with enantiomeric excesses over 75%, influenced by substrate and ligand types.
  • Among the catalysts tested, N-aminoindanol prolinamide emerged as the most effective ligand for various ketones, and both citrus and ruthenium methods could produce different enantiomers from certain substrates.

Article Abstract

Biocatalytic reduction of prochiral ketones using freshly ripened clementine mandarin (Citrus reticulata) in aqueous medium is reported. High enantioselectivities were observed, especially for the bioreduction of indanone , tetralone , and thiochromanone with respectively 95%, 99%, and 86% enantiomeric excess (ee). Enantioselective bio- and metal-catalyzed reactions were compared. Chiral ruthenium catalysts afforded good asymmetric inductions (>75% ee) in most cases, enantiomeric excesses depending on the nature of substrate and ligand. N-aminoindanol prolinamide was revealed as the best ligand for most ketones. Interestingly, for several substrates both enantiomers could be obtained using either Citrus reticulata or ruthenium complex.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chir.22413DOI Listing

Publication Analysis

Top Keywords

citrus reticulata
12
clementine mandarin
8
mandarin citrus
8
asymmetric reduction
4
reduction ketones
4
ketones biocatalysis
4
biocatalysis clementine
4
reticulata fruit
4
fruit grown
4
grown annaba
4

Similar Publications

Citrus black spot (CBS), caused by , is an important fungal disease of citrus. Higher CBS severity has been associated with infections at the young and green stages of fruit. The length of the fruit susceptibility period may be influenced by the amount of inoculum and the climate of the citrus growing region.

View Article and Find Full Text PDF

Most of the food packaging materials used in the market are petroleum-based plastics; such materials are neither biodegradable nor environmentally friendly and require years to decompose. To overcome these problems, biodegradable and edible materials are encouraged to be used because such materials degrade quickly due to the actions of bacteria, fungi, and other environmental effects. The present study examined that starch can be effectively used as raw material to develop biodegradable, edible films.

View Article and Find Full Text PDF

Background: Biowaste accounts for about 40% of total waste. Food-industry waste is one major biowaste stream. The available technological approaches to biowaste treatment are expensive, not circular, unsustainable, and they require pre-treatments such as dehydration, extraction of inhibitors, pH correction, or the addition of other organic matrices.

View Article and Find Full Text PDF

Introduction: Peels are an abundant but still underutilized waste product in the Citrus fruit industry. They contain coumarins with antiadipogenic potential that could be promising targets in new valorization strategies for Citrus peels.

Objectives: In this study, these coumarins, that is, citropten, bergamottin, and 5-geranyloxy-7-methoxycoumarin (5G7MC), were investigated in Citrus limon peels of different commercial varieties by HPLC-DAD after extraction with ethanol and choline chloride-based natural deep eutectic solvents (NADES) as alternative extraction agents in green natural product extraction.

View Article and Find Full Text PDF

Exploiting agri-food residues for kombucha tea and bacterial cellulose production.

Int J Biol Macromol

January 2025

NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; University of Naples Federico II, Department of Biology, Naples, Italy. Electronic address:

Bio-valorization of agri-food wastes lies in their possible conversion into fermented foodstuffs/beverages and/or biodegradable polymers such as bacterial cellulose. In this study, three different kombucha cultures were formulated using agri-food waste materials, citrus fruit residues and used coffee grounds, as alternative carbon and nitrogen sources, respectively. Over 21 days of fermentation, the kinetic profile was followed by monitoring cell number, pH variation, minerals, trace elements and production of bacterial cellulose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!