A first-principles study of critical temperatures (T(c)) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T(c) of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE(HL) and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T(c) by exploiting the ΔH/T - T and ΔS - T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T(c) of the two phases. This study shows the applicability of the DFT+U approach for predicting T(c) of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4902542 | DOI Listing |
J Chem Theory Comput
January 2025
Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan 621907, China.
Hubbard-corrected density-functional theory (DFT+) is widely employed to predict the physical properties of correlated materials; however, reliable predictions can be hindered by the presence of metastable solutions in the DFT+ calculations. This issue stems from the orbital physics inherent in DFT+. To address this, we propose a method to circumvent metastable states by applying a random orbital-dependent local perturbation to the localized orbitals.
View Article and Find Full Text PDFSci Rep
January 2025
Applied Optics Laboratory, Institute of Optics and Precision Mechanics, University Setif 1, Setif, 19000, Algeria.
This prediction evaluates the different physical characteristics of magnetic materials XFeO (X = Mg, Ca and Sr) by using density functional theory (DFT). The generalized gradient approximation (GGA) approach is chosen to define the exchange and correlation potential. The structural study of the compounds XFeO (X = Mg, Ca and Sr) shows that the ferromagnetic phase is the more stable ground state, where all the parameters of the network are given at equilibrium.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023 China. Electronic address:
Electrochemical glycerol oxidation reaction (GOR) presents a promising approach for converting excess glycerol (GLY) into high-value-added products. However, the complex mechanism and the challenge of achieving selectivity for diverse products make GOR difficult to address in both experimental and theoretical studies. In this work, three nitrogen-doped graphene-supported copper single-atom catalysts (CuN@Gra SACs, x = 2-4) were selected as the model system due to their simple structure, excellent conductivity and high structural stability.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
The delocalization length of charge carriers in organic semiconductors influences their mobility and is an important factor in the design of functional materials. Here, we have studied the radical anions of a series of linear and cyclic butadiyne-linked porphyrin oligomers using CW-EPR, H Mims ENDOR and NIR/MIR spectroelectrochemistry together with DFT calculations and multiscale molecular modeling. Low-temperature hyperfine EPR spectroscopy and optical data show that polarons are delocalized nonuniformly over about four porphyrins with most of the spin density on just two units even in the cyclic structures, in which all porphyrin sites are identical.
View Article and Find Full Text PDFBioorg Chem
January 2025
Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco. Electronic address:
Given the ease of synthetic accessibility and the promising biological profile demonstrated by both imidazo[1,2-a]pyridine and Chalcone derivatives, a series of Chalcone-based imidazo[1,2-a]pyridine derivatives were synthesized and characterized using H NMR, C NMR, Mass Spectrometry and FTIR techniques. Density functional theory (DFT) was employed to investigate the structural and electronic properties, providing insights into potential reactive sites. The synthesized compounds were evaluated in vitro for their antiviral properties against human immunodeficiency virus type-1 (HIV-1) and human immunodeficiency virus type-2 (HIV-2) in MT-4 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!