Anti-cancer therapeutic approaches targeting the vascular endothelial growth factor (VEGF) ligand (anti-VEGF) or inhibiting its receptors (RTKI) have recently been developed. In spite of the promising results achieved, a serious drawback and dose-limiting side effect is the development, among others, of renal complications. This encompasses two glomerular pathological entities, namely minimal change/focal segmental glomerulosclerosis and thrombotic micro-angiopathy, involving two distinct cell types, podocytes and endothelial cells, respectively. The mechanisms that link anti-cancer therapy by RTKI to podocyte dysfunction and nephrotic level proteinuria are still poorly understood. Nevertheless, recent findings strongly suggest a central role of RelA, the master subunit of NF-κB and c-mip, an active player in podocyte disorders. RelA, which is up-regulated following anti-VEGF therapy, is inactivated by RTKI, leading to c-mip over-expression in the podocyte. This results in severe alterations in the architecture of podocyte actin cytoskeleton and subsequent severe proteinuria. Hence, clarifying the mechanisms linking c-mip and RelA as key pathogenic factors represents a critical goal in the understanding of different glomerulopathies. In the context of VEGF-targeted anti-cancer therapy, the study of these mechanisms along with the molecular cross-talk between podocyte and endothelial cell constitutes the basis for the emerging field of onconephrology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ndt/gfu368 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!