Glycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:β-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galβ1-4GlcNAc-R (α-gal) glycan and allowed for the production of anti-α-gal antibodies (Abs) in humans, confers protection against Plasmodium spp. infection, the causative agent of malaria and a major driving force in human evolution. We demonstrate that both Plasmodium spp. and the human gut pathobiont E. coli O86:B7 express α-gal and that anti-α-gal Abs are associated with protection against malaria transmission in humans as well as in α1,3GT-deficient mice, which produce protective anti-α-gal Abs when colonized by E. coli O86:B7. Anti-α-gal Abs target Plasmodium sporozoites for complement-mediated cytotoxicity in the skin, immediately after inoculation by Anopheles mosquitoes. Vaccination against α-gal confers sterile protection against malaria in mice, suggesting that a similar approach may reduce malaria transmission in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261137PMC
http://dx.doi.org/10.1016/j.cell.2014.10.053DOI Listing

Publication Analysis

Top Keywords

malaria transmission
12
anti-α-gal abs
12
plasmodium spp
8
coli o86b7
8
protection malaria
8
transmission humans
8
malaria
5
gut microbiota
4
microbiota elicits
4
elicits protective
4

Similar Publications

Background: In moderate-to-high malaria transmission regions, the World Health Organization recommends intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) alongside insecticide-treated bed nets to reduce the adverse consequences of pregnancy-associated malaria. Due to high-grade Plasmodium falciparum resistance to SP, novel treatment regimens need to be evaluated for IPTp, but these increase pill burden and treatment days. The present qualitative study assessed the acceptability of IPTp-SP plus dihydroartemisinin-piperaquine (DP) in Papua New Guinea, where IPTp-SP was implemented in 2009.

View Article and Find Full Text PDF

The clinical development of novel vaccines, injectable therapeutics, and oral chemoprevention drugs has the potential to deliver significant advancements in the prevention of Plasmodium falciparum malaria. These innovations could support regions in accelerating malaria control, transforming existing intervention packages by supplementing interventions with imperfect effectiveness or offering an entirely new tool. However, to layer new medical tools as part of an existing programme, malaria researchers must come to an agreement on the gaps that currently limit the effectiveness of medical interventions for moderate to low transmission settings.

View Article and Find Full Text PDF

Background: The WHO malaria treatment guidelines recommend a total dose in the range of 3·5 to 7·0 mg/kg of primaquine to eliminate ( ) hypnozoites and prevent relapses. There are however indications that for tropical isolates, notably from Southeast Asia, the lower dose of 3·5 mg/kg is insufficient. Determining the most effective regimen to eliminate hypnozoites is needed to achieve elimination of this malaria parasite.

View Article and Find Full Text PDF

Increasing artemisinin partial resistance (ArtR) due to mutations in the gene encoding Kelch13 ( ) protein in eastern Africa is of urgent concern, and mutations, such as P441L, continue to emerge. We used an amplicon deep-sequencing panel to estimate the prevalence of ArtR mutations in samples collected between 2018 and 2023 in southern Zambia. P441L was present in 30 of 501 samples (6%), and prevalence increased over time (0% to 7.

View Article and Find Full Text PDF

An epidemiological risk assessment of imported malaria cases and potential local transmission in Qatar.

Eur J Public Health

January 2025

Health Protection and Communicable Diseases Control Department, Ministry of Public Health, Doha, Qatar.

Preventing local transmission of malaria from imported cases is crucial for achieving and maintaining malaria elimination. This study aimed to investigate the epidemiological characteristics of imported malaria cases and assess the distribution of malaria vectors in Qatar. Data from January 2016 to December 2022 on imported malaria, including demographic and epidemiological characteristics, travel-related information, and diagnostic results, were collected and analysed using descriptive statistics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!