Application of subharmonics for active sound design of electric vehicles.

J Acoust Soc Am

Center for Environmental Noise and Vibration Research, Engineering Research Institute, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Republic of Korea

Published: December 2014

The powertrain of electric vehicles generates an unfamiliar acoustical environment for customers. This paper seeks optimal interior sound for electric vehicles based on psychoacoustic knowledge and musical harmonic theory. The concept of inserting a virtual sound, which consists of the subharmonics of an existing high-frequency component, is suggested to improve sound quality. Subjective evaluation results indicate that the impression of interior sound can be enhanced in this manner. Increased appeal is achieved through two designed stimuli, which proves the effectiveness of the method proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.4898742DOI Listing

Publication Analysis

Top Keywords

electric vehicles
12
interior sound
8
sound
5
application subharmonics
4
subharmonics active
4
active sound
4
sound design
4
design electric
4
vehicles powertrain
4
powertrain electric
4

Similar Publications

It is well understood that a significant shift away from fossil fuel based transportation is necessary to limit the impacts of the climate crisis. Electric micromobility modes, such as electric scooters and electric bikes, have the potential to offer a lower-emission alternative to journeys made with internal combustion engine vehicles, and such modes of transport are becoming increasingly commonplace on our streets. Although offering advantages such as reduced air pollution and greater personal mobility, the widespread approval and uptake of electric micromobility is not without its challenges.

View Article and Find Full Text PDF

UAV selection for high-speed train communication using OTFS modulation.

Sci Rep

January 2025

Computational Learning Theory Team, RIKEN-Advanced Intelligence Project, Fukuoka, 819-0395, Japan.

Providing continuous wireless connectivity for high-speed trains (HSTs) is challenging due to their high speeds, making installing numerous ground base stations (BSs) along the HST route an expensive solution, particularly in rural and wilderness areas. This paper proposes using multiple unmanned aerial vehicles (UAVs) to deliver high data rate wireless connectivity for HSTs, taking advantage of their ability to fly, hover, and maneuver at low altitudes. However, autonomously selecting the optimal UAV by the HST is challenging.

View Article and Find Full Text PDF

The takeover issue, especially the setting of the takeover time budget, is a critical factor restricting the implementation and development of conditionally automated vehicles. The general fixed takeover time budget has certain limitations, as it does not take into account the driver's non-driving behaviors. Here, we propose an intelligent takeover assistance system consisting of all-round sensing gloves, a non-driving behavior identification module, and a takeover time budget determination module.

View Article and Find Full Text PDF

Finding gaps in the national electric vehicle charging station coverage of the United States.

Nat Commun

January 2025

Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, USA.

The United States federal government has invested $7.5 billion into charging infrastructure, including the National Electric Vehicle Infrastructure Program, to build fast charging stations along designated highways for long-distance car travel. We develop a consecutive coverage metric to compute the percent of United States roads (traffic-weighted) that are consecutively accessible within 500 miles of each county.

View Article and Find Full Text PDF

Introduction: The transition to electric vehicles (EVs) has highlighted the need for efficient diagnostic methods to assess the state of health (SoH) of lithium-ion batteries (LIBs) at the end of their life cycle. Electrochemical Impedance Spectroscopy (EIS) offers a non-invasive technique for determining battery degradation. However, automating this process in industrial settings remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!