It is increasingly common to monitor the marine environment and establish geographic trends of environmental contamination by measuring contaminant levels in animals from higher trophic levels. The health of an ecosystem is largely reflected in the health of its inhabitants. As an apex predator, the common bottlenose dolphin (Tursiops truncatus) can reflect the health of near shore marine ecosystems, and reflect coastal threats that pose risk to human health, such as legacy contaminants or marine toxins, e.g. polychlorinated biphenyls (PCBs) and brevetoxins. Major advances in the understanding of dolphin biology and the unique adaptations of these animals in response to the marine environment are being made as a result of the development of cell-lines for use in in vitro experiments, the production of monoclonal antibodies to recognize dolphin proteins, the development of dolphin DNA microarrays to measure global gene expression and the sequencing of the dolphin genome. These advances may play a central role in understanding the complex and specialized biology of the dolphin with regard to how this species responds to an array of environmental insults. This work presents the creation, characterization and application of a new molecular tool to better understand the complex and unique biology of the common bottlenose dolphin and its response to environmental stress and infection. A dolphin oligo microarray representing 24,418 unigene sequences was developed and used to analyze blood samples collected from 69 dolphins during capture-release health assessments at five geographic locations (Beaufort, NC, Sarasota Bay, FL, Saint Joseph Bay, FL, Sapelo Island, GA and Brunswick, GA). The microarray was validated and tested for its ability to: 1) distinguish male from female dolphins; 2) differentiate dolphins inhabiting different geographic locations (Atlantic coasts vs the Gulf of Mexico); and 3) study in detail dolphins resident in one site, the Georgia coast, known to be heavily contaminated by Aroclor 1268, an uncommon polychlorinated (PCB) mixture. The microarray was able to distinguish dolphins by sex, geographic location, and corroborate previously published health irregularities for the Georgia dolphins. Genes involved in xenobiotic metabolism, development/differentiation and oncogenic pathways were found to be differentially expressed in GA dolphins. The report bridges the advancements in dolphin genome sequencing to the first step towards providing a cost-effective means to screen for indicators of chemical toxin exposure as well as disease status in top level predators.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.margen.2014.11.002DOI Listing

Publication Analysis

Top Keywords

dolphin
9
dolphins
8
tursiops truncatus
8
marine environment
8
common bottlenose
8
bottlenose dolphin
8
dolphin genome
8
geographic locations
8
health
6
microarray
4

Similar Publications

Identification of Two Common Bottlenose Dolphin () Ecotypes in the Guadeloupe Archipelago, Eastern Caribbean.

Animals (Basel)

January 2025

Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, 75005 Paris, France.

The common bottlenose dolphin () exhibits significant intraspecific diversity globally, with distinct ecotypes identified in various regions. In the Guadeloupe archipelago, the citizen science NGO OMMAG has been monitoring these dolphins for over a decade, documenting two distinct morphotypes. This study investigates whether these morphotypes represent coastal and oceanic ecotypes, which have not been previously identified in the region.

View Article and Find Full Text PDF

Dolphin and porpoise detections by the F-POD are not independent: Implications for sympatric species monitoring, Cosentino, Marcolin, Griffiths, Sánchez-Camí, and Tougaard [(2024). JASA Express Lett. 4, 031202] address a significant issue, the reliability of the discrimination of dolphins and porpoises in recordings of their acoustic clicks by F-POD loggers, but unfortunately present a misleading interpretation of the process and results.

View Article and Find Full Text PDF

Understanding population demography of threatened species and how they vary in relation to natural and anthropogenic stressors is essential for effective conservation. We used a long-term photographic capture-recapture dataset (1993-2020) of Indo-Pacific bottlenose dolphins () in the highly urbanised Adelaide Dolphin Sanctuary (ADS), South Australia, to estimate key demographic parameters and their variability over time. These parameters were analysed in relation to environmental variables used as indicators of local and large-scale climatic events.

View Article and Find Full Text PDF

Despite numerous studies on the rise and fall of terrestrial megafauna in the late Quaternary, knowledge about marine megafauna from this period remains limited. In this study, we performed radiocarbon dating and partial mitochondrial DNA sequencing from the skeletal remains of three species of small odontocetes (Pacific white-sided dolphins, Dall's porpoises and harbour porpoises) excavated from prehistoric archaeological sites around the Japanese shore dating back to 8500-1000 years ago (ya). Pacific white-sided dolphins that habituated the eastern coast of Hokkaido around 2000 ya belonged to different maternal groups than those from over 5000 ya and today.

View Article and Find Full Text PDF

Microcystin (MC), a hepatotoxin produced by cyanobacteria, was introduced into the Indian River Lagoon (IRL), Florida, in 2005 through freshwater outflows. Since then, MC has been detected in humans, domestic animals, and wildlife in the lagoon. Potential public health effects associated with MC exposure along the IRL include an increased risk of non-alcoholic liver disease among area residents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!