Background: Standard chemotherapy in unresectable biliary tract carcinoma (BTC) patients is based on gemcitabine combined with platinum derivatives. However, primary or acquired resistance is inevitable and no second-line chemotherapy is demonstrated to be effective. Thus, there is an urgent need to identify new alternative (chemo)therapy approaches.
Methods: We evaluated the mechanism of action of ET-743 in preclinical models of BTC. Six BTC cell lines (TFK-1, EGI-1, TGBC1, WITT, KMCH, HuH28), two primary cell cultures derived from BTC patients, the EGI-1 and a new established BTC patient-derived xenografts, were used as preclinical models to investigate the anti-tumor activity of ET-743 in vitro and in vivo. Gene expression profiling was also analyzed upon ET-743 treatment in in vivo models.
Results: We found that ET-743 inhibited cell growth of BTC cell lines and primary cultures (IC50 ranging from 0.37 to 3.08 nM) preferentially inducing apoptosis and activation of the complex DNA damage-repair proteins (p-ATM, p-p53 and p-Histone H2A.x) in vitro. In EGI-1 and patient-derived xenografts, ET-743 induced tumor growth delay and reduction of vasculogenesis. In vivo ET-743 induced a deregulation of genes involved in cell adhesion, stress-related response, and in pathways involved in cholangiocarcinogenesis, such as the IL-6, Sonic Hedgehog and Wnt signaling pathways.
Conclusions: These results suggest that ET-743 could represent an alternative chemotherapy for BTC treatment and encourage the development of clinical trials in BTC patients resistant to standard chemotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289395 | PMC |
http://dx.doi.org/10.1186/1471-2407-14-918 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!