A three year survey on the dominant yeast populations in samples of air, must and wine in different vineyards and cellars of two northern Italian vine-growing territories (six sites in Franciacorta and eight sites in Oltrepò Pavese areas) was carried out. A total of 505 isolates were ascribed to 31 different species by RFLP analysis of the ITS1-5.8SrRNA-ITS2 region and partial sequence analysis of the 26S rRNA gene. The most commonly found species were Saccharomyces cerevisiae (frequency, F' = 58.7%; incidence, I' = 53.5%), Hanseniaspora uvarum (F' = 14.3%; I' = 5.3%), Metschnikowia fructicola (F' = 11.1%; I' = 5.0%) and Torulaspora delbrueckii (F' = 10.3%; I' = 3.8%). Among 270 S. cerevisiae new isolates, 156 (57.8%) revealed a different genetic pattern through polymorphism analysis of the interdelta regions by capillary electrophoresis, while 47 isolates (17.4 %) were clones of starter cultures. By considering the Shannon-Wiener index and results of principal component analysis (PCA) analyses, the year of isolation (vintage) proved to be a factor that significantly affected the biodiversity of the yeast species, whereas the geographical site (terroir) was not. Seventy-five per cent of S. cerevisiae isolates gathered in a unique cluster at a similarity level of 82%, while the remaining 25% were separated into minor groups without any evident relationship between δ-PCR profile and territory, year or source of isolation. However, in six cases a similar strain appeared at the harvesting time both in Franciacorta and Oltrepò Pavese areas, whereas surprisingly no strain was reisolated in the same vineyard or cellar for consecutive years.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.000004DOI Listing

Publication Analysis

Top Keywords

oltrepò pavese
12
three year
8
year survey
8
franciacorta oltrepò
8
northern italian
8
italian vine-growing
8
pavese areas
8
cerevisiae isolates
8
vintage overcomes
4
overcomes terroir
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!