This paper describes a generally applicable method for quantitative investigation of ligand-dependent binding of a regulatory protein to its target DNA at equilibrium. It is used here to analyse the coupled binding equilibria of cAMP receptor protein from Escherichia coli K12 (CRP) with DNA and the physiological effector cAMP. In principle, the DNA binding parameters of CRP dimers with either one or two ligands bound are determinable in such an approach. The change of protein fluorescence was used to measure CRP binding to its recognition sequence in the lac control region and to non-specific DNA. Furthermore, the binding of cAMP to preformed CRP-DNA complexes was independently studied by equilibrium dialysis. The data were analysed using a simple interactive model for two intrinsically identical sites and site-site interactions. The intrinsic binding constant K and the co-operativity factor alpha for binding of cAMP to free CRP depend only slightly on salt concentration between 0.01 M and 0.2 M. In contrast, the affinity of cAMP for CRP pre-bound to non-specific DNA increases with the salt concentration and the co-operativity changes from positive to negative. This results from cation rebinding to the DNA lattice upon forming the cAMP-CRP-DNA complex from cAMP and the pre-formed CRP-DNA complex. The CRP-cAMP1 complex shows almost the same affinity for specific and non-specific DNA as the CRP-cAMP2 complex, and both displace the same number of cations. It is concluded that the allosteric activation of CRP is induced upon binding of the first cAMP. These results are used to estimate the occupation of the CRP site in the lac control region in relation to the cAMP concentration in vivo. Under physiological conditions the lac promoter is activated by the CRP dimer complexed with only one cAMP. Furthermore, a model for the differential activation of various genes expressed under catabolite repression is presented and discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0022-2836(89)90244-1 | DOI Listing |
J Inflamm Res
January 2025
Cancer Center, Daping Hospital, Army Medical University, Chongqing, People's Republic of China.
Inflammatory bowel disease (IBD) is a non-specific inflammatory disease of digestive tract, primarily manifesting as ulcerative colitis (UC) and Crohn's disease (CD). The precise etiology of IBD remains elusive. The interplay of genetic factors, environmental influences, and intestinal microbiota contributes to the establishment of an uncontrolled immune environment within the intestine, which can progressively lead to atypical hyperplasia and ultimately to malignancy over a long period.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015. JSS Academy of Higher Education and Research, Mysuru, Karnataka, India.
There is a myriad of activities that involve mitochondria that are crucial for maintaining cellular equilibrium and genetic stability. In the pathophysiology of neurodegenerative illnesses, mitochondrial transcription influences mitochondrial equilibrium, which in turn affects their biogenesis and integrity. Among the crucial proteins for keeping the genome in optimal repair is mitochondrial transcription factor A, more commonly termed TFAM.
View Article and Find Full Text PDFJ Inorg Biochem
January 2025
College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China. Electronic address:
Developing multifunctional nanomedicines represents a frontier. We have engineered a high-capacity DNA vector basing rolling circle amplification for the delivery of copper sulfide nanoparticles (CuS NPs) and doxorubicin (DOX), coupled with multivalent aptamers (MA) that precisely target tumors, culminating in a multifunctional nanoplatform (RMALCu@DOX), which combines the chemotherapy (CT)/photothermal therapy (PTT)/chemodynamic therapy (CDT). The vector (RMAL) boasts exceptional biocompatibility and incorporates multiple copy units, enabling the precise loading of numerous CuS NPs, forming RMALCu which possesses a robust photothermal effect and superior Fenton-like catalytic activity, heralding a project of minimally invasive dual-mode (PTT/CDT) therapy.
View Article and Find Full Text PDFCRISPR-Cas12a is widely used for genome editing and biomarker detection since it can create targeted double-stranded DNA breaks and promote non-specific DNA cleavage after identifying specific DNA. To mitigate the off-target DNA cleavage of Cas12a, we previously developed a Cas12a variant (FnoCas12a ) by introducing double proline substitutions (K969P/D970P) in a conserved helix called the bridge helix (BH). In this work, we used cryogenic electron microscopy (cryoEM) to understand the molecular mechanisms of BH- mediated activation of Cas12a.
View Article and Find Full Text PDFZhonghua Zhong Liu Za Zhi
January 2025
Department of Pathology, China-Japan Friendship Hospital, Beijing100029, China.
To analyze the clinical significance of molecular classification and hereditary phenotype in endometrial carcinoma (EC) based on high throughput sequencing (NGS). 97 EC samples were collected retrospectively from December 2019 to October 2022 in China-Japan Friendship Hospital. NGS technique was used to analyze the molecular classification, POLE hypermutation, microsatellite high Instability/mismatch repair dysfunction (MSI-H/MMRd), P53 protein abnormality (P53 abn), and non-specific molecular profile (NSMP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!