Nonuniversality in the pinch-off of yield stress fluids: role of nonlocal rheology.

Phys Rev Lett

Université de Bordeaux, Laboratoire Ondes et Matière d'Aquitaine, UMR 5798 U. Bx/CNRS, 351 Cours de la Libération, 33405 Talence, France.

Published: November 2014

The pinch-off behavior of yield stress fluids is investigated using droplet and liquid-bridge breakup experiments. Contrary to expectations, the neck thinning behavior depends strongly on the way the breakup experiment is carried out. This nonuniversal behavior can be explained through an analysis of the thinning dynamics as well as the shapes of the fluid necks. Recent nonlocal models for the rheology of yield stress fluids are found to be compatible with the results presented.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.218302DOI Listing

Publication Analysis

Top Keywords

yield stress
12
stress fluids
12
nonuniversality pinch-off
4
pinch-off yield
4
fluids role
4
role nonlocal
4
nonlocal rheology
4
rheology pinch-off
4
pinch-off behavior
4
behavior yield
4

Similar Publications

Drought is a significant environmental stressor that induces changes in the physiological, morphological, biochemical, and molecular traits of plants, ultimately resulting in reduced plant growth and crop productivity. Seaweed extracts are thought to be effective in mitigating the effects of drought stress on plants. In this study, we investigated the impact of crude extract (CE), and polysaccharides (PS) derived from the brown macroalgae Fucus spiralis (Heterokontophyta, Phaeophyceae) applied at 5% (v/v) and 0.

View Article and Find Full Text PDF

Objectives: This study aimed to explore the perceptions of donation coordinators in Canada and understand how the COVID-19 pandemic impacted their work activities.

Design: A sequential mixed-method design incorporating a cross-sectional survey investigating demographic data, substance use and abuse and perceived stress related to the pandemic and semistructured qualitative interviews to further investigate those.

Setting: Organ donation organisations across Canada.

View Article and Find Full Text PDF

Advancements of astaxanthin production in Haematococcus pluvialis: Update insight and way forward.

Biotechnol Adv

January 2025

Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China. Electronic address:

The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT.

View Article and Find Full Text PDF

Comparative genomics analysis of the reason for C heavy-ion irradiation in improving FeO nanoparticle yield of Acidithiobacillus ferrooxidans.

Ecotoxicol Environ Saf

January 2025

Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China. Electronic address:

The FeO nanoparticle synthesized by Acidithiobacillus ferrooxidans have a broad practical value, while the low yield limits their commercial application. Herein, we employed a C heavy-ion beam to induce mutagenesis of A. ferrooxidans BYM and successfully screened a mutant BYMT-200 with a 1.

View Article and Find Full Text PDF

Genome-wide identification and characterization of alfalfa-specific genes in drought stress tolerance.

Plant Physiol Biochem

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Electronic address:

Alfalfa (Medicago sativa L.) is a prominent and distinct species within the pasture germplasm innovation industry. However, drought poses a substantial constraint on the yield and distribution of alfalfa by adversely affecting its growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!