Glucose and glycerol are useful carbon sources for the cultivation of Aurantiochytrium limacinum SR21. Glucose facilitates rapid growth and lipid synthesis, and glycerol promotes the accumulation of docosahexaenoic acid (DHA) in A. limacinum SR21. To improve the DHA productivity of A. limacinum SR21, shake flask and fed-batch cultures were performed using glucose and glycerol as mixed carbon sources (MCSs). Along with optimization of the MCSs, the best DHA yield and productivity (32.36 g/L and 337.1 mg/L/h) were obtained via fed-batch fermentation with maintenance of a constant air supply. The DHA productivity was 15.24% higher than that obtained using glucose as single carbon source (SCS). This study presents a highly efficient and economic strategy for the production of DHA by A. limacinum SR21.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2014.11.046 | DOI Listing |
Mar Drugs
December 2024
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
SR21, a kind of eukaryotic heterotrophic organism rich in unsaturated fatty acids, is an emerging microbial alternative to fish oil. The dietary inclusion of 15% SR21 was optimal for the growth performance of zebrafish. Previous studies demonstrated that fructose-1,6-bisphosphate aldolase (FBA) of is a valuable broad-spectrum antigen against various pathogens in aquaculture (e.
View Article and Find Full Text PDFFoods
November 2024
Department of Bioprocess Engineering and Biotechnology, Polytechnic Center, Federal University of Parana, Rua Cel. Francisco H. dos Santos-100, Curitiba 81530-000, PR, Brazil.
Thraustochytrids are emerging as a valuable biomass source for high-quality omega-3 polyunsaturated fatty acids (PUFAs), crucial for both human and animal nutrition. This research focuses on cultivating SR21 using cost-effective agro-industrial by-products, namely sugarcane molasses (SCM), corn steep liquor (CSL), and residual yeast cream (RYC), to optimize biomass and lipid production through a comprehensive multistep bioprocess. The study involved optimization experiments in shake flasks and stirred-tank bioreactors, where we evaluated biomass, lipid content, and DHA yields.
View Article and Find Full Text PDFMicrob Cell Fact
April 2024
Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden.
Background: Biotransformation of waste oil into value-added nutraceuticals provides a sustainable strategy. Thraustochytrids are heterotrophic marine protists and promising producers of omega (ω) fatty acids. Although the metabolic routes for the assimilation of hydrophilic carbon substrates such as glucose are known for these microbes, the mechanisms employed for the conversion of hydrophobic substrates are not well established.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2024
Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China.
Background: The hydrolysis and transphosphatidylation of phospholipase D (PLD) play important roles in the interconversion of phospholipids (PLs), which has been shown to profoundly impact lipid metabolism in plants. In this study, the effect of the PLD1 gene of Schizochytrium limacinum SR21 (S. limacinum SR21) on lipid metabolism was investigated.
View Article and Find Full Text PDFBioresour Technol
May 2023
Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway. Electronic address:
In this study lignocellulosic sugars from Norway spruce were used for production of docosahexaenoic acid (DHA) by the marine thraustochytrid Aurantiochytrium limacinum SR21. Enzymatically prepared spruce hydrolysate was combined with a complex nitrogen source and different amounts of salts. Shake flask batch cultivations revealed that addition of extra salts was not needed for optimal growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!