Although current PET scanners are designed and optimized to detect double coincidence events, there is a significant amount of triple coincidences in any PET acquisition. Triple coincidences may arise from causes such as: inter-detector scatter (IDS), random triple interactions (RT), or the detection of prompt gamma rays in coincidence with annihilation photons when non-pure positron-emitting radionuclides are used (β(+)γ events). Depending on the data acquisition settings of the PET scanner, these triple events are discarded or processed as a set of double coincidences if the energy of the three detected events is within the scanner's energy window. This latter option introduces noise in the data, as at most, only one of the possible lines-of-response defined by triple interactions corresponds to the line along which the decay occurred. Several novel works have pointed out the possibility of using triple events to increase the sensitivity of PET scanners or to expand PET imaging capabilities by allowing differentiation between radiotracers labeled with non-pure and pure positron-emitting radionuclides. In this work, we extended the Monte Carlo simulator PeneloPET to assess the proportion of triple coincidences in PET acquisitions and to evaluate their possible applications. We validated the results of the simulator against experimental data acquired with a modified version of a commercial preclinical PET/CT scanner, which was enabled to acquire and process triple-coincidence events. We used as figures of merit the energy spectra for double and triple coincidences and the triples-to-doubles ratio for different energy windows and radionuclides. After validation, the simulator was used to predict the relative quantity of triple-coincidence events in two clinical scanners assuming different acquisition settings. Good agreement between simulations and preclinical experiments was found, with differences below 10% for most of the observables considered. For clinical scanners and pure positron emitters, we found that around 10% of the processed double events come from triple coincidences, increasing this ratio substantially for non-pure emitters (around 25% for (124)I and > 50% for (86)Y). For radiotracers labeled with (18)F we found that the relative quantity of IDS events in standard acquisitions is around 18% for the preclinical scanner and between 14 and 22% for the clinical scanners. For non-pure positron emitters like (124)I, we found a β(+)γ triples-to-doubles ratio of 2.5% in the preclinical scanner and of up to 4% in the clinical scanners.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/60/1/117 | DOI Listing |
Appl Radiat Isot
December 2024
Radiation Physics Division, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899-8462, USA.
The massic activity of Ac in 0.1 mol/L HCl was measured by multiple primary methods over four consistent measurement campaigns. Results from the triple-to-double coincidence ratio (TDCR) method of liquid scintillation (LS) counting were in accord with other LS-based primary methods.
View Article and Find Full Text PDFJ Chem Phys
December 2024
State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
Using ion-ion coincidence measurements, we experimentally investigate the dissociative triple ionization of argon dimers in relative phase controlled elliptically polarized two-color femtosecond laser fields. By examining the kinetic energy release-dependent momentum angular distribution of the ejected ionic fragments, two distinct pathways, each associated with different intermediates, are identified. Control over the emission directions of the ionic fragments is achieved by varying the relative phase of the elliptical two-color laser fields.
View Article and Find Full Text PDFEnviron Geochem Health
November 2024
Department of Physics, Sidho-Kanho-Birsha University, Purulia, 723104, India.
In the present study, liquid scintillation counting triple to double coincidence ratio technique is used to ascertain the gross α and β activity in groundwater samples collected from the Beldih mine region in the vicinity of the South Purulia Shear Zone (SPSZ) of Chota Nagpur Plateau in eastern India. A total of sixty samples were collected from deep tube wells located in the study area to assess the potential health threats caused by α and β emitting radionuclides present in these water samples. Average gross α activity in the region of study is 0.
View Article and Find Full Text PDFBiomed Eng Lett
November 2024
Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.
Inter-crystal scattering (ICS) events in Positron Emission Tomography (PET) present challenges affecting system sensitivity and image quality. Understanding the physics and factors influencing ICS occurrence is crucial for developing strategies to mitigate its impact. This review paper explores the physics behind ICS events and their occurrence within PET detectors.
View Article and Find Full Text PDFAppl Radiat Isot
December 2024
Bureau International des Poids et Mesures (BIPM), Pavillon de Breteuil, F-92312, Sèvres Cedex, France.
The TDCR (Triple-to-Double Coincidence Ratio) measurement technique is a primary standardization method used by metrology laboratories to accurately determine the activity of radioactive solutions, particularly for radionuclides unsuitable for traditional coincidence counting methods, such as pure beta emitters. The TDCR method leverages a liquid scintillation counter equipped with three photomultiplier tubes (PMTs). This paper introduces TDCRPy, a novel Python package developed by the BIPM, designed to calculate detection efficiency of liquid scintillation counters using Monte Carlo simulations and decay data evaluations from the Decay Data Evaluation Project (DDEP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!