Rapamycin, an inhibitor of mTOR activity, is a potent inducer of erythroid differentiation and fetal hemoglobin production in β-thalassemic patients. Mithramycin (MTH) was studied to see if this inducer of K562 differentiation also operates through inhibition of mTOR. We can conclude from the study that the mTOR pathway is among the major transcript classes affected by mithramycin-treatment in K562 cells and a sharp decrease of raptor protein production and p70S6 kinase is detectable in mithramycin treated K562 cells. The promoter sequence of the raptor gene contains several Sp1 binding sites which may explain its mechanism of action. We hypothesize that the G+C-selective DNA-binding drug mithramycin is able to interact with these sequences and to inhibit the binding of Sp1 to the raptor promoter due to the following results: (a) MTH strongly inhibits the interactions between Sp1 and Sp1-binding sites of the raptor promoter (studied by electrophoretic mobility shift assays, EMSA); (b) MTH strongly reduces the recruitment of Sp1 transcription factor to the raptor promoter in intact K562 cells (studied by chromatin immunoprecipitation experiments, ChIP); (c) Sp1 decoy oligonucleotides are able to specifically inhibit raptor mRNA accumulation in K562 cells. In conclusion, raptor gene expression is involved in mithramycin-mediated induction of erythroid differentiation of K562 cells and one of its mechanism of action is the inhibition of Sp1 binding to the raptor promoter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309890 | PMC |
http://dx.doi.org/10.1016/j.phrs.2014.11.005 | DOI Listing |
Anal Chem
January 2025
School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China.
5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are crucial epigenetic modifications in eukaryotic genomic DNA that regulate gene expression and are associated with the occurrence of various cancers. Here, we combined bisulfite conversion with 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperridinium tetrafluoroborate (ACTBF, TCI) oxidation to develop a label-free and sequence-independent isothermal amplification (BTIA) assay for a genome-wide 5mC and 5hmC analysis. The BTIA strategy can distinguish 5mC and 5hmC signatures from other bases with high sensitivity and good specificity, avoiding sophisticated chemical modifications and expensive protein labeling.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
Background: A number of immunotherapeutic approaches have been developed and are entering the clinic. Bispecific antibodies (BsAbs) are one of these modalities and induce robust efficacy by endogenous T cells in several hematological malignancies. However, most of the treated patients experience only a temporary benefit.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy.
: Treatment with tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) has revolutionized disease management and has transformed CML from a life-threatening disease to a chronic condition for many patients. However, overcoming resistance, particularly related to leukemic stem cells (LSC) that can persist even when the bulk of the leukemic cells are eliminated, remains a significant challenge. : K562 and KU812 cell lines were treated in vitro with the TKI Imatinib (IM).
View Article and Find Full Text PDFMolecules
January 2025
Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China.
The Compendium of Materia Medica highlights the therapeutic properties of (). In this study, the species and content of volatile components, inorganic elements, and amino acids were measured, and the activity of crude extracts of ethanol and water was studied. GC-MS analysis revealed 37-53 components across different life stages, excluding excessive heavy metals and containing essential trace elements.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China.
The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!