The flavonoid quercetin is extensively studied for its antioxidant and chemopreventive properties. However the poor water-solubility, low stability and short half-life could restrict its use in skin care products and therapy. The present study was aimed to evaluate the potential of aminopropyl functionalized mesoporous silica nanoparticles (NH2-MSN) as topical carrier system for quercetin delivery. Thermo gravimetric analysis, X-ray diffraction, high resolution transmission electron microscopy, nitrogen adsorption isotherms, FT-IR spectroscopy, zeta potential measurements and differential scanning calorimetry allowed analyzing with great detail the organic-inorganic molecular interaction. The protective effect of this vehicle on UV-induced degradation of the flavonoid was investigated revealing a certain positive influence of the inclusion on the photostability over time. Epidermal accumulation and transdermal permeation of this molecule were ex vivo evaluated using porcine skin mounted on Franz diffusion cells. The inclusion complexation with the inorganic nanoparticles increased the penetration of quercetin into the skin after 24h post-application without transdermal delivery. The effect of quercetin alone or given as complex with NH2-MSN on proliferation of JR8 human melanoma cells was evaluated by sulforhodamine B colorimetric proliferation assay. At a concentration 60 μM the complex with NH2-MSN was more effective than quercetin alone, causing about 50% inhibition of cell proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2014.11.022 | DOI Listing |
Carbohydr Polym
March 2025
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China.
Research on stimuli-responsive micro-nanocontainers has gained attention for targeted corrosion inhibition and controlled emulsification-demulsification in oil recovery. However, existing nanocontainers face issues like irreversible drug release and limited functionality. This study presents a multi-functional nanocontainer design with reversible drug release and emulsification-demulsification capabilities.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India.
Lung cancer continues to be the leading cause of mortality globally. Nanotechnology-mediated targeted drug delivery approach is one of the promising strategies for the treatment of lung cancer. Due to their multifactorial role, mesoporous silica nanoparticles (MSNs), have attracted a lot of attention for drug delivery.
View Article and Find Full Text PDFACS Nano
January 2025
School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
Intracellular bacteria can evade the attack of the immune system and the bactericidal effects of most antibiotics due to the protective effect of the host cells. Herein, inspired by the stimuli-responsive behaviors of biological ion channels, a kind of synergistic cascade potassium ion (K)-responsive nanoparticles gated with K-responsive polymers is ingeniously designed to target intracellular bacteria and then control drug release. Due to the cooperative interaction of host-guest complexation and conformational transition of K-responsive polymers, the grafted gates based on these polymers could recognize high K concentration to reverse the negatively charged nanoparticles into positively charged ones for targeting bacteria and subsequently inducing a switch from the hydrophobic shrinking "off" state to the hydrophilic stretching "on" state for drug release.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia.
Medicinal plants are increasingly being explored due to their possible pharmacological properties and minimal adverse effects. However, low bioavailability and stability often limit efficacy, necessitating high oral doses to achieve therapeutic levels in the bloodstream. Mesoporous silica nanoparticles (MSNs) offer a potential solution to these limitations.
View Article and Find Full Text PDFMolecules
December 2024
IMT Atlantique, GEPEA, UMR CNRS 6144, F-44307 Nantes, France.
The textural properties of synthetic and natural clays in the sodium form and exchanged with tetramethylammonium cations (TMA) were characterized using N and Ar physisorption isotherms at cryogenic temperatures. Specific surface areas and micro/mesoporous volumes were determined using the BET and the models. The analysis requires the use of reference isotherms measured at the same temperature on the surface of non-porous materials with an identical chemical composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!