Background: Coronary artery disease (CAD) is the result of the accumulation of athermanous plaques within the walls of coronary arteries, which supply the myocardium with oxygen and nutrients. CAD leads to heart attacks or strokes and is, thus, one of the most important causes of death worldwide. Angiography, an imaging modality for blood vessels, is currently the most accurate method of diagnosing artery stenosis. However, the disadvantages of this method such as complications, costs, and possible side effects have prompted researchers to investigate alternative solutions.
Objectives: The current study aimed to use data analysis, a non-invasive and less costly method, and various data mining algorithms to predict the stenosis of arteries. Among many people who refer to hospitals due to chest pain, a great number of them are normal and as such do not need angiography. The objective of this study was to predict patients who are most probably normal using features with the highest correlations with CAD with a view to obviate angiography costs and complications. Not a substitute for angiography, this method would select high-risk cases that definitely need angiography.
Patients And Methods: Different features were measured and collected from potential patients in order to construct a dataset, which was later utilized for model extraction. Most of the proposed methods in the literature have not considered the stenosis of each artery separately, whereas the present study employed laboratory and echocardiographic data to diagnose the stenosis of each artery separately. The data were gathered from 303 random visitors to Rajaie Cardiovascular, Medical and Research Center. Electrocardiographic (ECG) data were studied in our previous works. The goal of this study was, therefore, to seek the accuracy of echocardiographic and laboratory features to predict CAD patients that require angiography.
Results: Bagging and C4.5 classification algorithms were drawn upon to analyse the data, the former reaching accuracy rates of 79.54%, 61.46%, and 68.96% for the diagnosis of the stenoses of the left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA), respectively. The accuracy to predict the LAD stenosis was attained via feature selection. In the current study, features effective in the stenosis of arteries were further determined, and some rules for the evaluation of triglyceride, hemoglobin, hypertension, dyslipidemia, diabetes mellitus, and ejection fraction were extracted.
Conclusions: The current study presents the highest accuracy value to diagnose the LAD stenosis in the literature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253773 | PMC |
http://dx.doi.org/10.5812/cardiovascmed.10888 | DOI Listing |
Eur J Radiol
January 2025
Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany. Electronic address:
Objectives: Coronary CT angiography (CCTA) is an excellent tool in ruling out coronary artery disease (CAD) but tends to overestimate especially highly calcified plaques. To reduce diagnostic invasive catheter angiographies (ICA), current guidelines recommend CT-FFR to determine the hemodynamic significance of coronary artery stenosis. Photon-Counting Detector CT (PCCT) revolutionized CCTA and may improve CT-FFR analysis in guiding patients.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
January 2025
National Heart Center Singapore, Singapore, Singapore.
Aims: To identify differences in CT-derived perivascular (PVAT) and epicardial adipose tissue (EAT) characteristics that may indicate inflammatory status differences between post-treatment acute myocardial infarction (AMI) and stable coronary artery disease (CAD) patients.
Methods And Results: A cohort of 205 post-AMI patients (age 59.8±9.
PLoS One
January 2025
Electrical, Mechanical & Computer Engineering School, Federal University of Goias, Goiania, Brazil.
This paper proposes the use of artificial intelligence techniques, specifically the nnU-Net convolutional neural network, to improve the identification of left ventricular walls in images of myocardial perfusion scintigraphy, with the objective of improving the diagnosis and treatment of coronary artery disease. The methodology included data collection in a clinical environment, followed by data preparation and analysis using the 3D Slicer Platform for manual segmentation, and subsequently, the application of artificial intelligence models for automated segmentation, focusing on the efficiency of identifying the walls of the left ventricular. A total of 83 clinical routine exams were collected, each exam containing 50 slices, which is 4,150 images.
View Article and Find Full Text PDFCoron Artery Dis
January 2025
Department of Cardiology and Electrotherapy, Silesian Center for Heart Diseases.
Eur J Prev Cardiol
January 2025
Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, Milan 20122, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!