Staphylococcus aureus antimicrobial resistance, especially to beta-lactams, favors treatment failures and its persistence in herd environment. This work aimed to develop a more specific primer for mecA gene detection based on the comparison of the conserved regions from distinct host origins and also investigated the presence of homologue mecA(LGA251) in bovine strains. A total of 43 Staphylococcus spp. were included in this study, comprising 38 bovine S. aureus, two human and three equine coagulase-negative staphylococci (CNS). Phenotypical methicillin-resistance detection was performed through oxacillin agar-screening and cefoxitin disk-diffusion test. None isolate tested positive for mecA(LGA251) gene. For mecA gene PCR, new primers were designed based on the sequences of human S. aureus (HE681097) and bovine S. sciuri (AY820253) mecA. The new primers based on the S. aureus mecA sequence amplified fragments of human and equine CNS and the ones based on S. sciuri mecA sequence only yielded fragments for S. aureus bovine strains. Multiples alignments of mecA gene sequences from bovine, human and equine revealed punctual but significant differences in bovine strains that can lead to the mecA gene detection impairment. The observed divergences of mecA gene sequences are not a matter of animal or human origin, it is a specificity of bovine samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204949 | PMC |
http://dx.doi.org/10.1590/s1517-83822014000300041 | DOI Listing |
Infect Prev Pract
March 2025
San Juan Bautista School of Medicine, Caguas, Puerto Rico.
Background: Mobile phones used by healthcare workers (HCWs) in hospitals are significant reservoirs of drug-resistant bacteria responsible for hospital-acquired infections (HAIs).
Aim: The objective of this study was to assess the level of contamination with such bacteria in outpatient clinics.
Methods: Swabs from 83 HCWs' mobile phones were processed using standard biochemical and enzymatic procedures to identify pathogenic bacteria.
Klin Mikrobiol Infekc Lek
March 2024
Institute of Microbiology, Faculty of Medicine, Palacky University in Olomouc, Czech Repubic, e-mail:
Objective: This study aimed to evaluate the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) at the University Hospital Olomouc (UHO) over a 10-year period (2013-2022).
Material And Methods: Data was obtained from the ENVIS LIMS laboratory information system (DS Soft, Czech Republic, Olomouc) of the Department of Microbiology, UHO, for the period 1/1/2013-31/12/2022. Standard microbiological procedures using the MALDI-TOF MS system (Biotyper Microflex, Bruker Daltonics) were applied for the identification.
Vet Res Commun
January 2025
Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand.
Staphylococcus pseudintermedius is a global animal pathogen. Traditional identification methods are time-consuming necessitating a more efficient approach. This study validated and enhanced the loop-mediated isothermal amplification (LAMP) technique by integration it with a lateral flow dipstick (LFD) assay for the detection of S.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland.
Aim: The study was designed to evaluate molecular alterations, relevant to the prognosis and personalized therapy of salivary gland cancers (SGCs).
Materials And Methods: DNA was extracted from archival tissue of 40 patients with various SGCs subtypes. A targeted next-generation sequencing (NGS) panel was used for the identification of small-scale mutations, focal and chromosomal arm-level copy number changes.
Microorganisms
December 2024
Grupo de Investigación Celular y Molecular de Microorganismos Patógenos, Department of Biological Scieces, Universidad de los Andes, Bogotá 111711, Colombia.
is a human pathogen responsible for a wide range of diseases, such as skin and soft tissue infections, pneumonia, toxic shock syndrome, and urinary tract infections. Methicillin-resistant (MRSA) is a well-known pathogen with consistently high mortality rates. Detecting the resistance gene and phenotypical profile to β-lactams allows for the differentiation of MRSA from methicillin-susceptible (MSSA) isolates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!