Bioavailability of pollutants in bacterial communities of Rodrigo de Freitas Lagoon, Rio de Janeiro, Brazil.

Braz J Microbiol

Laboratório de Microbiologia Marinha Departamento de Biologia Marinha Universidade Federal Fluminense NiteróiRJ Brazil Laboratório de Microbiologia Marinha, Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, RJ, Brazil.

Published: July 2015

Processes involving heavy metals and other contaminants continue to present unsolved environmental questions. To advance the understanding of geochemical processes that involve the bioavailability of contaminants, cores where collected in the Rodrigo de Freitas lagoon, and analyzed for bacterial activity and metal concentrations. Results would suggest an extremely reducing environment where organic substances seem to be the predominant agents responsible for this geochemical process. Analytical data showed sulphate reduction to be the main agent driving this process, since this kind of bacteria was found to be active in all of the samples analyzed. Esterase enzyme production did not signal the influence of heavy metals and hydrocarbon concentrations and heavy metals were found to be unavailable for biota. However, correlation between results for bacterial biomass and the potentially mobile percentage of the total Ni concentrations would suggest a negative impact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204982PMC
http://dx.doi.org/10.1590/s1517-83822014000300027DOI Listing

Publication Analysis

Top Keywords

heavy metals
12
rodrigo freitas
8
freitas lagoon
8
bioavailability pollutants
4
pollutants bacterial
4
bacterial communities
4
communities rodrigo
4
lagoon rio
4
rio janeiro
4
janeiro brazil
4

Similar Publications

Electrical excitability of neuronal networks based on the voltage threshold of electrical stimulation.

Sci Rep

December 2024

State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.

Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.

View Article and Find Full Text PDF

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.

View Article and Find Full Text PDF

Mammalian SLC39A13 promotes ER/Golgi iron transport and iron homeostasis in multiple compartments.

Nat Commun

December 2024

Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!