The tryptophan prenyltransferases FgaPT2 and 7-DMATS (7-dimethylallyl tryptophan synthase) from Aspergillus fumigatus catalyze C(4)- and C(7)-prenylation of the indole ring, respectively. 7-DMATS was found to accept l-tyrosine as substrate as well and converted it to an O-prenylated derivative. An acceptance of l-tyrosine by FgaPT2 was also observed in this study. Interestingly, isolation and structure elucidation revealed the identification of a C(3)-prenylated l-tyrosine as enzyme product. Molecular modeling and site-directed mutagenesis led to creation of a mutant FgaPT2_K174F, which showed much higher specificity toward l-tyrosine than l-tryptophan. Its catalytic efficiency toward l-tyrosine was found to be 4.9-fold in comparison with that of non-mutated FgaPT2, whereas the activity toward l-tryptophan was less than 0.4% of that of the wild-type. To the best of our knowledge, this is the first report on an enzymatic C-prenylation of l-tyrosine as free amino acid and altering the substrate preference of a prenyltransferase by mutagenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340383PMC
http://dx.doi.org/10.1074/jbc.M114.623413DOI Listing

Publication Analysis

Top Keywords

site-directed mutagenesis
8
tryptophan synthase
8
l-tyrosine
6
mutagenesis switching
4
switching dimethylallyl
4
dimethylallyl tryptophan
4
synthase specific
4
specific tyrosine
4
tyrosine c3-prenylating
4
c3-prenylating enzyme
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!