Unlabelled: T cells play a crucial role in viral clearance or persistence; however, the precise mechanisms that control their responses during viral infection remain incompletely understood. MicroRNA (miR) has been implicated as a key regulator controlling diverse biological processes through posttranscriptional repression. Here, we demonstrate that hepatitis C virus (HCV)-mediated decline of miR-181a expression impairs CD4(+) T-cell responses through overexpression of dual specific phosphatase 6 (DUSP6). Specifically, a significant decline of miR-181a expression along with overexpression of DUSP6 was observed in CD4(+) T cells from chronically HCV-infected individuals compared to healthy subjects, and the levels of miR-181a loss were found to be negatively associated with the levels of DUSP6 overexpression in these cells. Importantly, reconstitution of miR-181a or blockade of DUSP6 expression in CD4(+) T cells led to improved T-cell responses including enhanced CD25 and CD69 expression, increased interleukin-2 expression, and improved proliferation of CD4(+) T cells derived from chronically HCV-infected individuals.
Conclusion: Since a decline of miR-181a concomitant with DUSP6 overexpression is the signature marker for age-associated T-cell senescence, these findings provide novel mechanistic insights into HCV-mediated premature T-cell aging through miR-181a-regulated DUSP6 signaling and reveal new targets for therapeutic rejuvenation of impaired T-cell responses during chronic viral infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376593 | PMC |
http://dx.doi.org/10.1002/hep.27634 | DOI Listing |
Pulmonology
December 2025
Laboratory of Experimental Therapeutics, LIM-20, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
Background: Chronic obstructive pulmonary disease (COPD) induces an imbalance in T helper (Th) 17/regulatory T (Treg) cells that contributes to of the dysregulation of inflammation. Exercise training can modulate the immune response in healthy subjects.
Objective: We aimed to evaluate the effects of exercise training on Th17/Treg responses and the differentiation of Treg phenotypes in individuals with COPD.
Adv Healthc Mater
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.
View Article and Find Full Text PDFKaohsiung J Med Sci
January 2025
Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA.
SET domain bifurcated histone lysine methyltransferase 1 (SETDB1/ESET), a pivotal H3K9 methyltransferase, has been extensively studied since its discovery over two decades ago. SETDB1 plays critical roles in immune regulation, including B cell maturation, T-cell activity modulation, and endogenous retrovirus (ERV) silencing. While essential for normal immune cell function, SETDB1 overexpression in cancer cells disrupts immune responses by suppressing tumor immunogenicity and facilitating immune evasion.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Medical Microbiology and Immunology, Medical School, University of Pecs, Pecs, Hungary.
Introduction: The COVID-19 pandemic has become a global health crisis, eliciting varying severity in infected individuals. This study aimed to explore the immune profiles between moderate and severe COVID-19 patients experiencing a cytokine storm and their association with mortality. This study highlights the role of PD-1/PD-L1 and the TIGIT/CD226/CD155/CD112 pathways in COVID-19 patients.
View Article and Find Full Text PDFUltraviolet (UV)-induced DNA mutations produce genetic drivers of cutaneous melanoma initiation and numerous neoantigens that can trigger anti-tumor immune responses in the host. Consequently, melanoma cells must rapidly evolve to evade immune detection by simultaneously modulating cell-autonomous epigenetic mechanisms and tumor-microenvironment interactions. Angiogenesis has been implicated in this process; although an increase of vasculature initiates the immune response in normal tissue, solid tumors manage to somehow enhance blood flow while preventing immune cell infiltration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!