Synergistic effects of dimethyloxalylglycine and butyrate incorporated into α-calcium sulfate on bone regeneration.

Biomaterials

Department of Molecular Genetics, Dental Research Institute and BK21 Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea; Department of Pharmacology & Dental Therapeutics, School of Dentistry, Seoul National University, Seoul, Republic of Korea.

Published: January 2015

Osteogenesis is closely related to angiogenesis, and the combined delivery of angiogenic and osteogenic factors has been suggested to enhance bone regeneration. Small molecules have been explored as alternatives to growth factors for tissue regeneration applications. In this study, we examined the effects of the combined application of angiogenic and osteogenic small molecules on bone regeneration using a prolyl hydroxylase, dimethyloxalylglycine (DMOG), and a histone deacetylase inhibitor, butyrate. In a critical size bone defect model in rats, DMOG and butyrate, which were incorporated into α calcium sulfate (αCS), resulted in synergistic enhancements in bone and blood vessel formation, eventually leading to bone healing, as confirmed by micro-CT and histological analyses. In MC4 pre-osteoblast cultures, DMOG and butyrate enhanced the pro-angiogenic responses and osteoblast differentiation, respectively, which were evaluated based on the levels of hypoxia inducible factor (HIF)-1α protein and the expression of pro-angiogenic molecules (VEGF, home oxidase-1, glucose transporter-1) and by alkaline phosphatase (ALP) activity and the expression of osteoblast phenotype marker molecules (ALP, α1(I)col, osteocalcin, and bone sialoprotein). DMOG combined with butyrate synergistically improved osteoblast differentiation and pro-angiogenic responses, the levels of which were drastically increased in the cultures on αCS disks. Furthermore, it was demonstrated that αCS increased the level of HIF-1α and as a consequence VEGF expression, and supported osteoblast differentiation through the release of calcium ions from the αCS. Altogether, the results of this study provide evidence that a combination treatment with the small molecules DMOG and butyrate can expedite the process of bone regeneration and that αCS can be an efficient delivery vehicle for the small molecules for bone regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2014.10.054DOI Listing

Publication Analysis

Top Keywords

bone regeneration
20
small molecules
16
dmog butyrate
12
osteoblast differentiation
12
bone
9
butyrate incorporated
8
angiogenic osteogenic
8
molecules bone
8
pro-angiogenic responses
8
butyrate
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!