A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Th-1 biased immunomodulation and synergistic antileishmanial activity of stable cationic lipid-polymer hybrid nanoparticle: biodistribution and toxicity assessment of encapsulated amphotericin B. | LitMetric

AI Article Synopsis

  • Researchers created new lipid-polymer hybrid nanoparticles (LPNPs) to improve the delivery and effectiveness of Amphotericin B (AmpB), targeting macrophages to reduce toxicity.
  • These LPNPs showed a strong ability to encapsulate AmpB, sustain drug release, and safely deliver the medication with minimal toxicity to healthy cells, particularly in the liver and spleen.
  • The study demonstrated that AmpB-LPNPs significantly inhibited leishmaniasis parasites in both laboratory and animal models while showing a better safety profile compared to traditional AmpB treatments.

Article Abstract

To address issues related to Amphotericin B (AmpB) clinical applications, we developed macrophage targeted cationic stearylamine lipid-polymer hybrid nanoparticles (LPNPs) with complementary characteristics of both polymeric nanoparticles and liposomes, for enhancement of therapeutic efficacy and diminishing toxic effect of encapsulated AmpB. The LPNPs (size 198.3 ± 3.52 nm, PDI 0.135 ± 0.03, zeta potential +31.6 ± 1.91 mV) provide core-shell type structure which has the ability to encapsulate amphiphilic AmpB in higher amount (Encapsulation efficiency 96.1 ± 2.01%), sustain drug release and stabilize formulation tremendously. Attenuated erythrocytes and J774A.1 toxicity of LPNPs demonstrated safe applicability for parenteral administration. Elevated macrophage uptake of LPNPs, rapid plasma clearance and higher drug allocation in macrophage abundant liver and spleen illustrated admirable antileishmanial efficacy of AmpB-LPNPs in vitro (IC50, 0.16 ± 0.04 μg AmpB/ml) and in vivo (89.41 ± 3.58% parasite inhibition) against visceral leishmaniasis models. Augmentation in antileishmanial activity due to Th-1 biased immune-alteration mediated by drug-free LPNPs which elevated microbicidal mediators of macrophages. Moreover, minimal distribution to kidney tissues and low level of nephrotoxicity markers (creatinine and BUN) demonstrated the safety profile of AmpB-LPNPs. Conclusively, reliable safety and macrophage directed therapeutic performance of AmpB-LPNPs suggest it as promising alternative to commercial AmpB-formulations for the eradication of intra-macrophage diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2014.11.019DOI Listing

Publication Analysis

Top Keywords

th-1 biased
8
antileishmanial activity
8
lipid-polymer hybrid
8
lpnps
5
biased immunomodulation
4
immunomodulation synergistic
4
synergistic antileishmanial
4
activity stable
4
stable cationic
4
cationic lipid-polymer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!