Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Retention behavior of micron-sized particles in gravitational field-flow fractionation (GrFFF) was studied in this study. Effects of ionic strength and flow rate as well as the viscosity of the GrFFF carrier liquid was investigated on the size-based selectivity (Sd), retention ratio (R), and plate height (H) of micron-sized particles using polystyrene latex beads as model particles. It was found that the retention ratio of microparticles increases with increasing flow rate or the viscosity of the carrier liquid as the particles are forced away from the accumulation wall by increased hydrodynamic lift forces (HLF). On the other hand, the retention time increases (retention ratio decreases) with increasing ionic strength of the carrier liquid at the same flow rate, due to decreased repulsive interaction between the particles and the channel accumulation wall (glass in this study) allowing the particles approach closer to the wall. Results suggest the ionic strength of the carrier liquid plays a critical role in determining retention of microparticles in GrFFF as well as the viscosity or the flow rate of the carrier liquid. It was found that the resolution and the separation time could be improved by increasing the carrier viscosity and by carefully adjusting the ionic strength of the carrier liquid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2014.05.061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!