Classical measurements of performances are typically based on linear scales. However, in analytical chemistry a simple scale may be not sufficient to analyze the analytical performance appropriately. Here partial order methodology can be helpful. Within the context described here, partial order analysis can be seen as an ordinal analysis of data matrices, especially to simplify the relative comparisons of objects due to their data profile (the ordered set of values an object have). Hence, partial order methodology offers a unique possibility to evaluate analytical performance. In the present data as, e.g., provided by the laboratories through interlaboratory comparisons or proficiency testings is used as an illustrative example. However, the presented scheme is likewise applicable for comparison of analytical methods or simply as a tool for optimization of an analytical method. The methodology can be applied without presumptions or pretreatment of the analytical data provided in order to evaluate the analytical performance taking into account all indicators simultaneously and thus elucidating a "distance" from the true value. In the present illustrative example it is assumed that the laboratories analyze a given sample several times and subsequently report the mean value, the standard deviation and the skewness, which simultaneously are used for the evaluation of the analytical performance. The analyses lead to information concerning (1) a partial ordering of the laboratories, subsequently, (2) a "distance" to the Reference laboratory and (3) a classification due to the concept of "peculiar points".
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2014.09.009 | DOI Listing |
Background And Aims: A catheter-related bloodstream infection (CRBSI) is a life-threatening complication of hemodialysis. It is responsible for significant morbidity and mortality and a costly long hospital stay. Despite its burden, little is known about the factors associated with it and the antibiogram of its responsible causative bacteria.
View Article and Find Full Text PDFPeerJ
January 2025
University of Amsterdam, Amsterdam, Netherlands.
Background: Achilles tendinopathy (AT) management can be difficult, given the paucity of effective treatment options and the degenerative nature of the condition. Innovative therapies for Achilles tendinopathy are therefore direly needed. New therapeutic developments predominantly begin with preclinical animal and in vitro studies to understand the effects at the molecular level and to evaluate toxicity.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India.
Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA.
Peptides are widely used in biomaterials due to their ease of synthesis, ability to signal cells, and modify the properties of biomaterials. A key benefit of using peptides is that they are natural substrates for cell-secreted enzymes, which creates the possibility of utilizing cell-secreted enzymes for tuning cell-material interactions. However, these enzymes can also induce unwanted degradation of bioactive peptides in biomaterials, or in peptide therapies.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133, Republic of Korea.
Ruthenium (Ru)-based electrocatalysts have shown promise for anion exchange membrane water electrolysis (AEMWE) due to their ability to facilitate water dissociation in the hydrogen evolution reaction (HER). However, their performance is limited by strong hydrogen binding, which hinders hydrogen desorption and water re-adsorption. This study reports the development of RuNi nanoalloys supported on MoO, which optimize the hydrogen binding strength at Ru sites through modulation by adjacent Ni atoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!