Morusin is a prenylated flavonoid that has been isolated from the root bark of the mulberry tree (Morus species, Moraceae), a Chinese traditional medicine. It has been synthesized by our laboratory from commercially available phloroglucinol, and has demonstrated to possess antitumor effects of cell lines including A549, MCF-7, and MDA-MB-231. In this study, at non-cytotoxic concentrations, morusin altered invasive morphology and suppressed cell-matrix adhesion, cell motility and cell invasion in SK-Hep1 cells. Morusin also increased the expression of E-cadherin, an epithelial cell junction protein, decreased the expression of vimentin, a mesecnchymal marker, and α2-, α6-, β1- integrin, which regulated cancer attachment and migration. In addition, morusin reduced the activity of matrix metalloproteinase-2 and 9 (MMP-2 and MMP-9), which were involved in extracellular matrix (ECM) degradation and promoting cancer cell invasion. Furthermore, morusin suppressed the signal transducer and activator of transcription 3 (STAT3) and nuclear factor-κB (NFκB) signaling pathways, which modulate the protein expression involved in the invasion process. Finally, morusin decreased the lung colonization of the SK-Hep1 cells in the nude mice. These results indicate morusin possesses antitumor progression potential through suppressing STAT3 and NFκB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2014.11.031 | DOI Listing |
Transl Oncol
January 2025
Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China; Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China. Electronic address:
Sorafenib and lenvatinib are frontline treatments for advanced hepatocellular carcinoma (HCC). While lenvatinib surpasses sorafenib in efficacy and tolerability, resistance remains a significant clinical challenge. Recent research highlights the potential of TRIM family proteins in modulating lenvatinib resistance in HCC, necessitating a deeper understanding of their specific mechanisms.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America.
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and the second leading cause of cancer-related mortality globally. Despite advancements in current HCC treatment, it remains a malignancy with poor prognosis. Therefore, developing novel treatment options for patients with HCC is urgently needed.
View Article and Find Full Text PDFToxics
November 2024
The Julius L. Chambers Biomedical/Biotechnology Research Institute (JLC-BBRI), North Carolina Central University (NCCU), Durham, NC 27707, USA.
Crude oil naphtha fraction C9 alkylbenzenes consist of trimethylbenzenes, ethyltoluenes, cumene, and n-propylbenzene. The major fraction of C9 alkylbenzenes is ethyltoluenes (ETs) consisting of three isomers: 2-ethyltoluene (2-ET), 3-ethyltoluene (3-ET), and 4-ethyltoluene (4-ET). Occupational and environmental exposure to ETs can occur via inhalation and ingestion and cause several health problems.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd., Taichung, 402, Taiwan.
Hepatocellular carcinoma (HCC) constitutes 90% of liver cancer cases and ranks as the third leading cause of cancer-related mortality, necessitating urgent development of alternative therapies. Lactoferrin (LF), a natural iron-binding glycoprotein with reported anticancer effects, is investigated for its potential in liver cancer treatment, an area with limited existing studies. This study focuses on evaluating LF's anti-liver cancer effects on HCC cells and assessing the preventive efficacy of oral LF administration in a murine model.
View Article and Find Full Text PDFAnticancer Res
December 2024
College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!