A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oscillations in the stability of consecutive chemical bonds revealed by ion-induced desorption. | LitMetric

AI Article Synopsis

  • Strengthening one chemical bond can weaken adjacent bonds, but little research has explored how this effect impacts the entire molecular structure.
  • By forming self-assembled monolayers on a surface, researchers can selectively change the strength of primary bonds in molecules.
  • Using advanced techniques like secondary-ion mass spectrometry and computational simulations, the study reveals detectable fluctuations in bond stability along the molecule, which decrease with distance from the surface, indicating a fundamental characteristic of chemical bonding.

Article Abstract

While it is a common concept in chemistry that strengthening of one bond results in weakening of the adjacent ones, no results have been published on if and how this effect protrudes further into the molecular backbone. By binding molecules to a surface in the form of a self-assembled monolayer, the strength of a primary bond can be selectively altered. Herein, we report that by using secondary-ion mass spectrometry, we are able to detect for the first time positional oscillations in the stability of consecutive bonds along the adsorbed molecule, with the amplitudes diminishing with increasing distance from the molecule-metal interface. To explain these observations, we have performed molecular dynamics simulations and DFT calculations. These show that the oscillation effects in chemical-bond stability have a very general nature and break the translational symmetry in molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201406053DOI Listing

Publication Analysis

Top Keywords

oscillations stability
8
stability consecutive
8
consecutive chemical
4
chemical bonds
4
bonds revealed
4
revealed ion-induced
4
ion-induced desorption
4
desorption common
4
common concept
4
concept chemistry
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!