An epididymis-specific carboxyl esterase CES5A is required for sperm capacitation and male fertility in the rat.

Asian J Androl

Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences; Shanghai Institute of Planned Parenthood Research, Shanghai, China.

Published: December 2015

Despite the fact that the phenomenon of capacitation was discovered over half century ago and much progress has been made in identifying sperm events involved in capacitation, few specific molecules of epididymal origin have been identified as being directly involved in this process in vivo . Previously, our group cloned and characterized a carboxyl esterase gene Ces5a in the rat epididymis. The CES5A protein is mainly expressed in the corpus and cauda epididymidis and secreted into the corresponding lumens. Here, we report the function of CES5A in sperm maturation. By local injection of Lentivirus -mediated siRNA in the CES5A -expressing region of the rat epididymis, Ces5a -knockdown animal models were created. These animals exhibited an inhibited sperm capacitation and a reduction in male fertility. These results suggest that CES5A plays an important role in sperm maturation and male fertility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650488PMC
http://dx.doi.org/10.4103/1008-682X.143314DOI Listing

Publication Analysis

Top Keywords

male fertility
12
carboxyl esterase
8
sperm capacitation
8
rat epididymis
8
epididymis ces5a
8
sperm maturation
8
ces5a
7
sperm
5
epididymis-specific carboxyl
4
esterase ces5a
4

Similar Publications

All too often overlooked: a growing case for routine male clinical fertility examination.

Fertil Steril

January 2025

C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, 275 E. Hancock St., Detroit, MI, 48375; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA.

View Article and Find Full Text PDF

Background: Herpes simplex virus type 2 (HSV-2) is a common sexually transmitted infection (STI) primarily acquired through sexual contact. In 2000, the World Health Organization (WHO) for the first time reported the association of STIs with male infertility. Infertility is described as the inability to achieve a clinical pregnancy after engaging in regular, unprotected sexual intercourse for a year or more.

View Article and Find Full Text PDF

Novel variants of FSIP2 and SPEF2 cause varying degrees of spermatozoa damage in MMAF patients and favorable ART outcomes.

J Assist Reprod Genet

January 2025

NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.

Purpose: This study identified novel variants of the FSIP2 and SPEF2 genes in multiple morphological abnormalities of the sperm flagella (MMAF) patients and to investigate the potential effect of variations on male infertility and assisted reproductive outcomes.

Methods: Whole-exome sequencing was performed in 106 Chinese MMAF patients. The discovered variants were evaluated in silico and confirmed by Sanger sequencing.

View Article and Find Full Text PDF

Effect of in vitro exposure of first-line antiretrovirals on healthy human spermatozoa on kinematics and motility.

Int Urol Nephrol

January 2025

Department of Urology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa.

Purpose: Contemporary antiretroviral (ARV) medications are used by millions of men for HIV treatment worldwide. Limited data exist on their direct effect on sperm motility. This pilot study hypothesizes that in vitro exposure to ARVs will reduce sperm kinematic and motility parameter values.

View Article and Find Full Text PDF

Spermatogenesis is one of the most complex processes of cell differentiation and its failure is a major cause of male infertility. Therefore, a proper model that recapitulates spermatogenesis in vitro has been long sought out for basic and clinical research. Testis organ culture using the gas-liquid interphase method has been shown to support spermatogenesis in mice and rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!