New technologies and challenges of novel virus detection.

PDA J Pharm Sci Technol

Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD, USA.

Published: January 2018

The use of new cell substrates for the development of biologicals, particularly tumorigenic and tumor-derived cell lines, can pose a major regulatory challenge due to safety concerns related to the presence of novel viruses, latent and occult viruses including oncogenic viruses, and endogenous retroviruses, since these may not be detected by the currently recommended conventional assays. This report is a summary of our laboratory's experiences using advanced nucleic acid-based technologies to evaluate a Madin-Darby canine kidney (MDCK) cell line and the insect Sf9 cell line derived from Spodoptera frugiperda, and presents some ongoing efforts to address the challenges of novel virus detection.

Download full-text PDF

Source
http://dx.doi.org/10.5731/pdajpst.2014.01029DOI Listing

Publication Analysis

Top Keywords

challenges novel
8
novel virus
8
virus detection
8
technologies challenges
4
cell
4
detection cell
4
cell substrates
4
substrates development
4
development biologicals
4
biologicals tumorigenic
4

Similar Publications

Short Aromatic Blocks Enhance Styrene Conversion in Polymer Cubosome Formation via Polymerization-Induced Self-Assembly.

Macromol Rapid Commun

January 2025

School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.

Polymer cubosomes (PCs) have garnered significant interest in the field of nanomaterials and nanotechnology due to their unique properties and potential applications. However, the fabrication of PCs remains challenging. Polymerization-induced self-assembly (PISA) is recognized as an efficient method for producing a variety of polymer particles, including PCs.

View Article and Find Full Text PDF

Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.

View Article and Find Full Text PDF

Interpreting Variants of Uncertain Significance in PCD: Abnormal Splicing Caused by a Missense Variant of DNAAF3.

Mol Genet Genomic Med

January 2025

The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.

Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.

Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.

View Article and Find Full Text PDF

Despite significant advancements in achieving high recanalization rates (80%-90%) for large vessel occlusions through mechanical thrombectomy, the issue of "futile recanalization" remains a major clinical challenge. Futile recanalization occurs when over half of patients fail to experience expected symptom improvement after vessel recanalization, often resulting in severe functional impairment or death. Traditionally, this phenomenon has been attributed to inadequate blood flow and reperfusion injury.

View Article and Find Full Text PDF

Variations in the development of carpal bones are uncommon, with the scaphoid bone typically forming from the fusion of the os centrale carpi and the radial chondrification center during embryogenesis. A bipartite scaphoid is a rare congenital disorder that occurs when these ossification centers fail to fuse, with a prevalence ranging from 0.1% to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!