The design of bifunctional magnetic luminescent nanomaterials containing Fe3O4 functionalized with rare earth ion complexes of calixarene and β-diketonate ligands is reported. Their preparation is accessible through a facile one-pot method. These novel Fe3O4@calix-Eu(TTA) (TTA = thenoyltrifluoroacetonate) and Fe3O4@calix-Tb(ACAC) (ACAC = acetylacetonate) magnetic luminescent nanomaterials show interesting superparamagnetic and photonic properties. The magnetic properties (M-H and ZFC/FC measurements) at temperatures of 5 and 300 K were explored to investigate the extent of coating and the crystallinity effect on the saturation magnetization values and blocking temperatures. Even though magnetite is a strong luminescence quencher, the coating of the Fe3O4 nanoparticles with synthetically functionalized rare earth complexes has overcome this difficulty. The intramolecular energy transfer from the T1 excited triplet states of TTA and ACAC ligands to the emitting levels of Eu(3+) and Tb(3+) in the nanomaterials and emission efficiencies are presented and discussed, as well as the structural conclusions from the values of the 4f-4f intensity parameters in the case of the Eu(3+) ion. These novel nanomaterials may act as the emitting layer for the red and green light for magnetic light-converting molecular devices (MLCMDs).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic5018856DOI Listing

Publication Analysis

Top Keywords

rare earth
12
fe3o4 functionalized
8
earth complexes
8
magnetic luminescent
8
luminescent nanomaterials
8
functionalized rare
8
red-green emitting
4
emitting superparamagnetic
4
superparamagnetic nanomarkers
4
nanomarkers fe3o4
4

Similar Publications

Atomically Dispersed Ta-O-Co Sites Capable of Mitigating Side Reaction Occurrence for Stable Lithium-Oxygen Batteries.

J Am Chem Soc

January 2025

Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.

The side reactions accompanying the charging and discharging process, as well as the difficulty in decomposing the discharge product lithium peroxide, have been important issues in the research field of lithium-oxygen batteries for a long time. Here, single atom Ta supported by CoO hollow sphere was designed and synthesized as a cathode catalyst. The single atom Ta forms an electron transport channel through the Ta-O-Co structure to stabilize octahedral Co sites, forming strong adsorption with reaction intermediates and ultimately forming a film-like lithium peroxide that is highly dispersed.

View Article and Find Full Text PDF

High-pressure continuous culturing: life at the extreme.

Appl Environ Microbiol

January 2025

Department of Earth, Environmental and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA.

Microorganisms adapted to high hydrostatic pressures at depth in the oceans and within the subsurface of Earth's crust represent a phylogenetically diverse community thriving under extreme pressure, temperature, and nutrient availability conditions. To better understand the microbial function, physiological responses, and metabolic strategies at conditions requires high-pressure (HP) continuous culturing techniques that, although commonly used in bioengineering and biotechnology applications, remain relatively rare in the study of the Earth's microbiomes. Here, we focus on recent developments in the design of HP chemostats, with particular emphasis on adaptations for delivery and sampling of dissolved gases.

View Article and Find Full Text PDF

Avoiding severe structural distortion, irreversible phase transition, and realizing the stabilized multielectron redox are vital for promoting the development of high-performance NASICON-type cathode materials for sodium-ion batteries (SIBs). Herein, a high-entropy NaVFeTiMnCr(PO) (HE-NaTMP) cathode material is prepared by ultrafast high-temperature shock, which inhibits the possibility of phase separation and achieves reversible and stable multielectron transfer of 2.4/2.

View Article and Find Full Text PDF

A double probe-based fluorescence sensor array to detect rare earth element ions.

Analyst

January 2025

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.

There is a persistent need for effective sensors to detect rare earth element ions (REEIs) due to their effects on human health and the environment. Thus, a simple and efficient fluorescence-based detection method for REEIs that offers convenience, flexibility, versatility, and efficiency is essential for ensuring environmental safety, food quality, and biomedical applications. In this study, 6-aza-2-thiothymine-gold nanoclusters (ATT-AuNCs) and bovine serum albumin/3-mercaptopropionic acid-AuNCs (BSA/MPA-AuNCs) were utilized to detect 14 REEIs (Sc, Gd, Lu, Y, Ce, Pr, Yb, Dy, Tm, Sm, Ho, Tb, La, and Eu), resulting in the creation of a simple, sensitive, and multi-target fluorescence sensor array detection platform.

View Article and Find Full Text PDF

Exploring Tetra-/Penta-/Hexavalent Ion Substitution in Yttrium-Based Halide Solid-State Electrolytes.

Nano Lett

January 2025

Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P.R. China.

Although aliovalent ion substitution is an important strategy for enhancing ionic conductivity in halide electrolytes, the choice of doping ions is often restricted to tetravalent ions, and investigations into the intrinsic origin of the doping mechanism are lacking. In this work, we investigated the effects of Zr, Ta and W doping on the crystal structure and ionic conductivity of yttrium-based rare-earth halides. Only Zr achieves fast ion diffusion in both the (001) and (002) crystal planes by affecting the volume of the octahedron and the tetrahedral interstitial space, whereas Ta significantly enhances the ion diffusion rate in the (001) crystal plane while suppressing it in the (002) plane, and W does the opposite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!