We compared pursuit responses to 2D target motion in three separate conditions: predictable, randomised and randomised with timing cues. The target moved on a continuous quadrilateral path in which right-angle direction changes allowed anticipatory eye acceleration and deceleration in orthogonal axes to be assessed. Results indicated that whether the timing of direction changes was random or predictable, anticipatory acceleration, initiated by extra-retinal mechanisms, occurred in the new direction at approximately the same time as anticipatory deceleration in the terminating direction, but deceleration was of greater magnitude than acceleration. When path duration was randomised within a range of durations, the timing of acceleration and deceleration was almost constant irrespective of actual ramp duration but was dependent on the mean duration of the range. When ramp duration was predictable both deceleration and acceleration increased, the latter allowing peak velocity to be attained earlier than when randomised. When timing cues were given at a fixed time prior to direction change in randomised stimuli, this also resulted in higher anticipatory acceleration/deceleration. When both duration and velocity of sequential ramps were randomised, deceleration was dependent on target velocity, but acceleration remained constant. Altogether these findings show that although acceleration and deceleration in orthogonal axes occur almost simultaneously and are similarly affected by predictability, control of their magnitude is relatively independent. We suggest that deceleration and acceleration result from the switching off and on, respectively, of retinal and extra-retinal oculomotor components prior to direction change, with dynamics dependent on predictability of stimulus magnitude and timing.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-014-4164-xDOI Listing

Publication Analysis

Top Keywords

acceleration deceleration
12
predictability control
8
randomised timing
8
timing cues
8
direction changes
8
acceleration
8
deceleration
8
deceleration orthogonal
8
orthogonal axes
8
ramp duration
8

Similar Publications

Traumatic brain injury (TBI) is characterized as a heterogeneous and pathological remodeling of brain physiology because of various external mechanisms, including blows, falls, and rapid acceleration and deceleration of the skull. Its pathophysiology consists of two distinct moments, beginning with a primary lesion resulting from the impact that evolves into a secondary lesion as biochemical and molecular mechanisms are activated. The severity and prognosis after TBI vary widely, depending on factors such as the site of the injury, the patient's premorbid history, and the severity of the injury, and can result in long-term sequelae impacting multiple organs and systems, with a reduction in the life expectancy of these individuals.

View Article and Find Full Text PDF

Previous studies on gender differences in running biomechanics have predominantly been limited to joint angles and have not investigated a potential influence of footwear condition. This study shall contribute to closing this gap. Lower body biomechanics of 37 recreational runners (19 f, 18 m) were analysed for eight footwear and two running speed conditions.

View Article and Find Full Text PDF

The accumulation of damaged mitochondria has long been considered a hallmark of the aging process. Among various factors, age-related mitochondrial alterations comprise bioenergetic impairments and disturbances in reactive oxygen species (ROS) control, thereby negatively affecting mitochondrial performance and ultimately accelerating aging. Previous studies have revealed that polyamine spermidine appears to exert health-protective and lifespan-promoting effects.

View Article and Find Full Text PDF

Water striders inhabit the elastic surface tension film of water, sharing their environment with other aquatic organisms. Their survival relies heavily on swift maneuverability and navigation around floating obstacles, which aids in the exploration of their habitat and in escaping from potential threats. Their high agility is strongly based on the ability to execute precise turns, enabling effective directional control.

View Article and Find Full Text PDF

Heavy mechanical force decelerates orthodontic tooth movement via Piezo1-induced mitochondrial calcium down-regulation.

Genes Dis

March 2025

College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.

Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs), which sense biomechanical stimuli and initiate alveolar bone remodeling. Light (optimal) forces accelerate OTM, whereas heavy forces decelerate it. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities under different mechanical forces (MFs) remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!