We report a high-performance 92 to 96 GHz cross-spectrum phase modulation (PM) noise measurement system. Utilizing this system, we measured residual PM noise of several amplifiers, mixers, and frequency multipliers. Data for the measurement system noise floor and the PM noise of W-band components are reported. These results can serve as a temporary benchmark because little or no information is available on the PM noise of components in this frequency range. In addition, we discuss an enhanced-performance frequency synthesizer that operates in the 92 to 96 GHz range. We achieved 5 to 10 dB improvement in the PM noise at 96 GHz compared with our previously designed synthesizer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2014.006647 | DOI Listing |
Med Phys
January 2025
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, CO, China.
Straightness is the basic measurement parameter in machining, and the traditional straightness measurement methods such as light gap method, table method, et al., have extremely low measurement efficiency and cannot achieve online real-time high-precision detection. Our research group has proposed a machine vision online detection based on 10 industrial camera arrays, which can obtain the surface profile straight line of the sucker rod by collecting the edge profile image of the sucker rod and performing morphological transformation.
View Article and Find Full Text PDFArch Dis Child Fetal Neonatal Ed
January 2025
Centre for Perinatal Research, University of Nottingham, School of Medicine, Nottingham, UK
Objective: To assess the utility of a bespoke smartphone app to map noise and vibration exposure across neonatal road ambulance journeys.
Design And Setting: Prospective observational study of ambulance journeys across a large UK neonatal transport service. Smartphones, with an in-house developed app, were secured to incubator trolleys to collect vibration and noise data for comparison with international standards.
Sci Rep
January 2025
School of Information and Communication Engineering, North University of China, Taiyuan, 030051, China.
The Insulated Gate Bipolar Transistor (IGBT) is a crucial power semiconductor device, and the integrity of its internal structure directly influences both its electrical performance and long-term reliability. However, the precise semantic segmentation of IGBT ultrasonic tomographic images poses several challenges, primarily due to high-density noise interference and visual distortion caused by target warping. To address these challenges, this paper constructs a dedicated IGBT ultrasonic tomography (IUT) dataset using Scanning Acoustic Microscopy (SAM) and proposes a lightweight Multi-Scale Fusion Network (LMFNet) aimed at improving segmentation accuracy and processing efficiency in ultrasonic images analysis.
View Article and Find Full Text PDFJ Comput Assist Tomogr
November 2024
From the Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
Objective: This preliminary study aims to assess the image quality of enhanced-resolution deep learning reconstruction (ER-DLR) in magnetic resonance cholangiopancreatography (MRCP) and compare it with non-ER-DLR MRCP images.
Methods: Our retrospective study incorporated 34 patients diagnosed with biliary and pancreatic disorders. We obtained MRCP images using a single breath-hold MRCP on a 3T MRI system.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!