Targeted Hsp70 expression combined with CIK-activated immune reconstruction synergistically exerts antitumor efficacy in patient-derived hepatocellular carcinoma xenograft mouse models.

Oncotarget

Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China.Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China.

Published: January 2015

The patient-derived tumor xenograft (PDTX) models can reproduce a similar natural genetic background and similar biological behaviors to tumor cells in patients, which is conducive to the assessment of personalized cancer treatment. In this study, to verify the targeting and effectiveness of the therapeutic strategy using a Survivin promoter-regulated oncolytic adenovirus expressing Hsp70, the PDTX models of hepatocellular carcinoma (HCC) were established in nude mice and the cytokine-induced killer (CIK) cells were intravenously infused into mice to partially reconstruct the mouse immune function. The results demonstrated that, either the immune anti-tumor effect caused by CIK cell infusion or the oncolytic effect generated by oncolytic adenovirus replication was very limited. However, the synergistic tumor inhibitory effect was significantly enhanced after treatments with oncolytic adenovirus expressing Hsp70 combined with CIK cells. Oncolytic adenovirus mediated the specific expression of Hsp70 in cancer tissues allowed the CIK chemotaxis, and induce the infiltration of CD3+ T cells in tumor stroma, thereby exhibiting anti-tumor activity. The anti-tumor effect was more effective for the highly malignant tumor xenografts with highly Survivin expression. This strategy can synergistically activate multiple anti-tumor mechanisms and exert effective anti-tumor activities that have a significant inhibitory effect against the growth of HCC xenografts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359218PMC
http://dx.doi.org/10.18632/oncotarget.2835DOI Listing

Publication Analysis

Top Keywords

oncolytic adenovirus
16
hepatocellular carcinoma
8
pdtx models
8
adenovirus expressing
8
expressing hsp70
8
cik cells
8
tumor
5
oncolytic
5
anti-tumor
5
targeted hsp70
4

Similar Publications

Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.

View Article and Find Full Text PDF

Background: Despite significant advancements in the treatment of malignant melanoma, metastatic mucosal melanoma remains a therapeutic challenge due to its complex pathogenesis, distinct pathological characteristics, and limited response to immunotherapy. Combining different immunotherapeutic approaches offers a potential strategy to address these challenges. Tumor-infiltrating lymphocyte (TIL) therapy and oncolytic virus therapy represent promising treatment modalities that may synergize with each other.

View Article and Find Full Text PDF

Oncolytic viruses expressing MATEs facilitate target-independent T-cell activation in tumors.

EMBO Mol Med

January 2025

Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.

Oncolytic viruses (OV) expressing bispecific T-cell engagers (BiTEs) are promising tools for tumor immunotherapy but the range of target tumors is limited. To facilitate effective T-cell stimulation with broad-range applicability, we established membrane-associated T-cell engagers (MATEs) harboring the protein transduction domain of the HIV-Tat protein to achieve non-selective binding to target cells. In vitro, MATEs effectively activated murine T cells and improved killing of MC38 colon carcinoma cells.

View Article and Find Full Text PDF

Introduction: Approximately 75% of bladder cancer cases are non-muscle invasive at diagnosis. Drug development for non-muscle invasive bladder cancer (NMIBC) has historically lagged behind that of other malignancies. No treatment has demonstrated the ability to overcome drug resistance that ultimately leads to recurrence and progression.

View Article and Find Full Text PDF

Oncolytic viruses (OVs) are a promising therapeutic approach for cancer, although their systemic administration faces significant challenges. Mesenchymal stem cells have emerged as potential carriers to overcome these obstacles due to their tumor-tropic properties. This study investigates the use of menstrual blood-derived mesenchymal stem cells (MenSCs) as carriers for OVs in cancer therapy, focusing on enhancing their efficacy through different culture conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!