Neurodevelopmental disorders (NDDs) affect more than 3% of children and are attributable to single-gene mutations at more than 1000 loci. Traditional methods yield molecular diagnoses in less than one-half of children with NDD. Whole-genome sequencing (WGS) and whole-exome sequencing (WES) can enable diagnosis of NDD, but their clinical and cost-effectiveness are unknown. One hundred families with 119 children affected by NDD received diagnostic WGS and/or WES of parent-child trios, wherein the sequencing approach was guided by acuity of illness. Forty-five percent received molecular diagnoses. An accelerated sequencing modality, rapid WGS, yielded diagnoses in 73% of families with acutely ill children (11 of 15). Forty percent of families with children with nonacute NDD, followed in ambulatory care clinics (34 of 85), received diagnoses: 33 by WES and 1 by staged WES then WGS. The cost of prior negative tests in the nonacute patients was $19,100 per family, suggesting sequencing to be cost-effective at up to $7640 per family. A change in clinical care or impression of the pathophysiology was reported in 49% of newly diagnosed families. If WES or WGS had been performed at symptom onset, genomic diagnoses may have been made 77 months earlier than occurred in this study. It is suggested that initial diagnostic evaluation of children with NDD should include trio WGS or WES, with extension of accelerated sequencing modalities to high-acuity patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286868 | PMC |
http://dx.doi.org/10.1126/scitranslmed.3010076 | DOI Listing |
Hum Genet
January 2025
Department of Biomedical Sciences, University of Padova, Padova, Italy.
The Genetics of Neurodevelopmental Disorders Lab in Padua provided a new intellectual disability (ID) Panel challenge for computational methods to predict patient phenotypes and their causal variants in the context of the Critical Assessment of the Genome Interpretation, 6th edition (CAGI6). Eight research teams submitted a total of 30 models to predict phenotypes based on the sequences of 74 genes (VCF format) in 415 pediatric patients affected by Neurodevelopmental Disorders (NDDs). NDDs are clinically and genetically heterogeneous conditions, with onset in infant age.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
Background: Neurodevelopmental disorders (NDDs) affect approximately 15% of children and adolescents worldwide. This group of disorders is often polygenic with varying risk factors, with many associated genes converging on shared molecular pathways, including chromatin regulation and transcriptional control. Understanding how NDD-associated chromatin regulators and protein complexes orchestrate these regulatory pathways is crucial for elucidating NDD pathogenesis and developing targeted therapeutic strategies.
View Article and Find Full Text PDFBMJ Open
January 2025
Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
Objectives: This study aimed to explore the ethical challenges faced by healthcare professionals (HCPs) in managing children and adolescents with neurodevelopmental disorders (NDDs) in Lebanon. The primary research question addressed how HCPs navigate ethical dilemmas related to patient autonomy, surrogate decision-making and communication in the context of severe cognitive impairments.
Design: Qualitative, cross-sectional study using semi-structured interviews.
Curr Opin Neurobiol
December 2024
Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, 08901, USA. Electronic address:
Cyclic AMP (cAMP) is a key regulator of synaptic function and is dysregulated in both neurodevelopmental (NDD) and neurodegenerative disorders. Due to the ease of diffusion and promiscuity of downstream effectors, cAMP signaling is restricted within spatiotemporal domains to localize activation. Among the best-studied mechanisms is the feedback inhibition of cAMP-dependent protein kinase (PKA) activity by phosphodiesterases 4 (PDE4s) at synapses controlling neuronal plasticity, which is largely regulated by PDE4D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!