Decay of velvet worms (Onychophora), and bias in the fossil record of lobopodians.

BMC Evol Biol

Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK.

Published: November 2014

Background: Fossil lobopodians, including animals proposed to have close affinity to modern onychophorans, are crucial to understanding the evolution of the panarthropod body plan and the phylum-level relationships between the ecdysozoan groups. Unfortunately, the key features of their anatomy are un-mineralized and subject to biases introduced during death, decay and preservation, yet the extent to which these fossils have been affected by the processes of post-mortem decay is entirely untested. Recent experimental work on chordates has highlighted a profound bias caused by decay, resulting in the erroneous interpretation of badly decayed specimens as primitive members of a clade (stemward slippage). The degree to which this bias affects organisms other than chordates is unknown.

Results: Here we use experimental decay of velvet worms (Onychophora) to examine the importance of decay bias in fossil lobopodians. Although we find stemward slippage is not significant in the interpretation of non-mineralized lobopodian fossils, the affect of decay is far from unbiased. Quantitative analysis reveals significant changes in body proportions during decay, a spectrum of decay resistance across anatomical features, and correlated decay of topologically associated characters.

Conclusions: These results have significant implications for the interpretation of fossil lobopodian remains, demonstrating that features such as body outline and relative proportions are unreliable for taxonomy or phylogenetic reconstruction, unless decay is taken into account. Similarly, the non-independent loss of characters, due to juxtaposition in the body, during decay has the potential to bias phylogenetic analyses of non-biomineralized fossils. Our results are difficult to reconcile with interpretations of highly decay-prone tissues and structures, such as neural tissue, and complex musculature, in recently described Cambrian lobopodians. More broadly, we hypothesize that stemward slippage is unlikely to be a significant factor among the taphonomic biases that have affected organisms where decay-resistant features of the anatomy are rich in phylogenetically informative characters. Conversely, organisms which possess decay-resistant body parts but have informative characters concentrated in decay-prone tissues will be just as liable to bias as those that lack decay-resistant body parts. Further experimental analysis of decay is required to test these hypotheses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266977PMC
http://dx.doi.org/10.1186/s12862-014-0222-zDOI Listing

Publication Analysis

Top Keywords

decay
13
stemward slippage
12
decay velvet
8
velvet worms
8
worms onychophora
8
bias fossil
8
fossil lobopodians
8
features anatomy
8
decay-prone tissues
8
informative characters
8

Similar Publications

Förster resonance energy transfer (FRET) is a powerful technique used to investigate the conformational preferences of biosystems, and molecular simulations have emerged as an ideal complement to FRET due to their ability to provide structural models that can be compared with experiments. This synergy is however hampered by the approximations underlying Förster theory regarding the electronic coupling between the participating dyes: a dipole-dipole term attenuated by a simple dielectric screening factor 1/ that depends on the refractive index of the medium. Whereas the limits of the dipole approximation are well-known, detailed insights on how environment effects deviate from the 1/ assumption and modify the distance dependence that characterizes FRET as a spectroscopic ruler are still not well understood, especially in biosystems characterized by significant structural disorder.

View Article and Find Full Text PDF

Temperature-Dependent Rotation of Protonated Methyl Groups in Otherwise Deuterated Proteins Modulates DEER Distance Distributions.

Appl Magn Reson

October 2024

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 USA.

Unlabelled: Temperature-dependent DEER effects are observed as a function of methyl rotation by either leucine- or nitroxide-specific protonated methyl groups in an otherwise deuterated background. Both species induce a site-specific enhancement in the apparent relaxation of the paramagnetic nitroxide label. The presence of a single protonated methyl group in close proximity (4-10 Å) to only one of the two nitroxide rotamer ensembles in AviTagged immunoglobulin-binding B domain of protein A results in a selective and substantial decrease in , manifested by differential decay of the peak intensities in the bimodal distance distribution as a function of the total dipolar evolution time, temperature, or both.

View Article and Find Full Text PDF

Organic Micropollutants in Waterways of a Large-Scale Water Diversion Project: Insights from Nontarget Screening and "Community" Analysis.

Environ Sci Technol

January 2025

Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.

Large-scale water diversion projects are essential for meeting the needs of water-stressed regions, necessitating an evaluation of their impact on water quality and aquatic ecosystems. This study provides the first snapshots of organic micropollutants (OMPs) along the 1466 km Eastern Route of China's South-to-North Water Diversion Project. Using nontarget analysis with ultrahigh-performance liquid chromatography and high-resolution mass spectrometry, we identified and quantified 357 OMPs from water samples collected during the water diversion period (WDP) and the nonwater diversion period (NWDP).

View Article and Find Full Text PDF

Operando electron paramagnetic resonance is used to monitor the light-initiated generation of the diethylnitroxyl radical from diethylhydroxylamine (DEHA) and its decay kinetics, thereby unveiling solvent effects on both the electronic structure and stability of the nitroxyl radical. The observed trends in hyperfine coupling constants ( and ) across different solvents align with previously reported values of the 4-amino-2,2,6,6-tetramethylpiperidoxyl radical (ATEMPO). Regarding the stability of the DEHA radical in various solvents, the obtained decay-kinetic constants () correlated more strongly with than with the permittivity of the solvents.

View Article and Find Full Text PDF

Rapid acclimatization to baseline stimulation with a multi-canal vestibulocochlear implant.

Eur Arch Otorhinolaryngol

January 2025

Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience (MHENS), Maastricht University Medical Centre, Maastricht, The Netherlands.

Purpose: It is hypothesized that a vestibular implant should re-establish baseline activity of the ampullary nerves. Use of a constant baseline stimulation potentially allows encoding of bi-directional head movements, through the addition of signal modulations. Effective stimulation of the vestibular nerves depends on the ability to acclimate to this baseline signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!