Abnormal accumulation of soluble amyloid beta (Aβ) is believed to cause malfunction of neurons in Alzheimer's disease (AD). The hippocampus is one of the earliest affected brain regions in AD. However, little effort has been made to investigate the effects of soluble Aβ1-42 oligomers on discharge properties of hippocampal neurons in vivo. This study was designed to examine the effects of soluble Aβ1-42 oligomers on the discharge properties of hippocampal CA1 neurons using extracellular single-unit recordings in vivo. The protective effects of riluzole (RLZ) were also investigated for the prevention of soluble oligomers of Aβ1-42-induced alterations in the spontaneous discharge of hippocampal neurons. The results showed that (1) the mean frequency of spontaneous discharge was increased by the local application of 100 μM Aβ1-42 oligomers; (2) Aβ1-42 oligomers also induced alterations of the neuronal firing patterns in the hippocampal CA1 region; and (3) pretreatment with 20 μM RLZ effectively inhibited the Aβ1-42-induced enhancement of spontaneous discharge and alterations of neuronal firing patterns in CA1 neurons. Our study suggested that Aβ1-42 oligomers induced hyperactivity and perturbed the firing patterns in hippocampal neurons. RLZ may provide neuroprotective effects on the Aβ1-42-induced perturbation of neuronal activities in the hippocampal region of rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/13506129.2014.990558 | DOI Listing |
J Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States.
The mammalian high mobility group protein AT-hook 2 (HMGA2) is a small DNA-binding protein that specifically targets AT-rich DNA sequences. Structurally, HMGA2 is an intrinsically disordered protein (IDP), comprising three positively charged 'AT-hooks' and a negatively charged C-terminus. HMGA2 can form homodimers through electrostatic interactions between its 'AT-hooks' and C-terminus.
View Article and Find Full Text PDFNanoscale
January 2025
College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
Anodes play an important role in lithium-ion batteries (LIBs) and have received much attention as ideal carbon anode materials for meeting the needs for high-rate capability, long-term stability, and high energy density. In this study, a π-extended oligo(perylene) diimide (PTN) is synthesized by using a solvothermal reaction with NH·HO as the decarboxylation reaction catalyst and perylene anhydride as the precursor. A nanocarbon fiber framework can be produced through self-assembly during the carbonization process of π-extended perylene diimide oligomers.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Engineering Mechanics, Hohai University, Nanjing 211100, P.R. China.
The aberrant aggregation of the human islet amyloid polypeptide (hIAPP) is a hallmark of type II diabetes. LL37, the only cathelicidin host-defense peptide in humans, plays essential roles in antimicrobial and immunomodulatory activities. Mounting evidence indicates that LL37 can inhibit the amyloid aggregation of hIAPP, suggesting possible interplays between infections and amyloid diseases while the mechanism remains unclear.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
Deposition of abnormally phosphorylated tau aggregates is a central event leading to neuronal dysfunction and death in Alzheimer's disease (AD) and other tauopathies. Among tau aggregates, oligomers (TauOs) are considered the most toxic. AD brains show significant increase in TauOs compared to healthy controls, their concentration correlating with the severity of cognitive deficits and disease progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!