A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Temporal dynamics of active Archaea in oxygen-depleted zones of two deep lakes. | LitMetric

Temporal dynamics of active Archaea in oxygen-depleted zones of two deep lakes.

Environ Microbiol Rep

Laboratoire 'Microorganismes: Génome et Environnement', Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, F-63000, France; UMR 6023, LMGE, CNRS, Aubière, F-63171, France.

Published: April 2015

AI Article Synopsis

  • Deep lakes provide unique environments for studying archaeal communities due to their chemical stratification, which creates diverse ecological niches.
  • Monthly investigations over a year revealed distinct patterns in the active archaeal communities between two deep lakes, reflecting their different environmental conditions.
  • The study highlighted that not all Thaumarchaeota perform nitrification, and there is potential for uncharacterized archaeal groups to play significant roles in nutrient cycling within these lake ecosystems.

Article Abstract

Deep lakes are of specific interest in the study of archaeal assemblages as chemical stratification in the water column allows niche differentiation and distinct community structure. Active archaeal community and potential nitrifiers were investigated monthly over 1 year by pyrosequencing 16S rRNA transcripts and genes, and by quantification of archaeal amoA genes in two deep lakes. Our results showed that the active archaeal community patterns of spatial and temporal distribution were different between these lakes. The meromictic lake characterized by a stable redox gradient but variability in nutrient concentrations exhibited large temporal rearrangements of the dominant euryarchaeal phylotypes, suggesting a variety of ecological niches and dynamic archaeal communities in the hypolimnion of this lake. Conversely, Thaumarchaeota Marine Group I (MGI) largely dominated in the second lake where deeper water layers exhibited only short periods of complete anoxia and constant low ammonia concentrations. Investigations conducted on archaeal amoA transcripts abundance suggested that not all lacustrine Thaumarchaeota conduct the process of nitrification. A high number of 16S rRNA transcripts associated to crenarchaeal group C3 or the Miscellaneous Euryarchaeotic Group indicates the potential for these uncharacterized groups to contribute to nutrient cycling in lakes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1758-2229.12251DOI Listing

Publication Analysis

Top Keywords

deep lakes
12
active archaeal
8
archaeal community
8
16s rrna
8
rrna transcripts
8
archaeal amoa
8
archaeal
6
lakes
5
temporal dynamics
4
dynamics active
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!