Effect of the peak cell density of recombinant AcMNPV-infected Hi5 cells on baculovirus yields.

Appl Microbiol Biotechnol

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia,

Published: February 2015

AI Article Synopsis

  • The cell density effect in rAcMNPV-infected Hi5 cells is linked to decreases in mRNA levels rather than nutrient limitations.
  • The study observed that as cell density increased, key indicators like viral DNA, mRNA, and β-galactosidase protein declined, suggesting a direct relationship between higher cell density and reduced yield.
  • Fresh medium can mitigate, but not fully prevent, the decline in yield, indicating issues during the early stages of virus replication and transcription rather than translation limitations.

Article Abstract

The phenomenon of the cell density effect is not readily explained by an obvious nutrient limitation, and a recent study has suggested that for recombinant Autographa californica multiple nucleopolyhedrovirus (rAcMNPV)-infected Sf9 cells, a drop in messenger RNA (mRNA) levels may be sufficient to explain the cell density effect for this system. The current study aims to investigate the response in cell-specific yields (viral DNA (vDNA), LacZ mRNA and β-galactosidase (β-Gal) protein) with increasing infection cell density (ICD) for rAcMNPV-infected Hi5 cells, where the rAcMNPV expresses the β-Gal gene under control of the polyhedral promoter. Hi5 cells in suspension culture of Express Five® medium were synchronously infected with a rAcMNPV at multiple ICDs between 0.5 and 6 × 10(6) cells/mL and a multiplicity of infection of 10 plaque-forming units (PFU)/cell either in the original or fresh medium conditions. There were negative correlations between the three key virus infection indicators (vDNA, mRNA and β-Gal) and the peak cell density (PCD). However, unlike infected Sf9 cells, the yield decline started at the lowest PCD investigated (0.6 × 10(6) cells/mL). Generally, the yield decline with increasing PCD was most pronounced for β-Gal followed by mRNA and was more moderate for vDNA. The decline was significantly reduced but not totally arrested when fresh medium replacement was used. The results suggest that the reduction in recombinant protein-specific yields at high PCDs is associated with limitations during the up-stream processes of replication and transcription rather than entirely caused by limitations during translation. In addition, low production rates at late infection stages of moderate to high ICDs are a probable cause of the cell density effect.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-014-6260-zDOI Listing

Publication Analysis

Top Keywords

cell density
24
hi5 cells
12
peak cell
8
sf9 cells
8
fresh medium
8
yield decline
8
density
6
cells
5
cell
5
density recombinant
4

Similar Publications

Background: Gastrointestinal bleeding (GIB) is a severe and potentially life-threatening complication in patients with acute myocardial infarction (AMI), significantly affecting prognosis during hospitalization. Early identification of high-risk patients is essential to reduce complications, improve outcomes, and guide clinical decision-making.

Objective: This study aimed to develop and validate a machine learning (ML)-based model for predicting in-hospital GIB in patients with AMI, identify key risk factors, and evaluate the clinical applicability of the model for risk stratification and decision support.

View Article and Find Full Text PDF

High Areal Loading Silicon Nanoparticle-Based Lithium-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Electrical & Computer Engineering Department, Montana State University, Bozeman, Montana 59717, United States.

Interfacial mechanical stability between silicon (Si) and the current collector is crucial when high areal-loading of Si is demanded as intense stress develops at the interface due to its extreme volume alteration during the lithiation-delithiation process. Therefore, we propose using a thin, rough, porous, and highly conductive carbon nanotube network (CNT-N) as a buffer layer between the Si and current collector that provides abundant anchor sites for Si nanoparticles. The strong and elastic CNT-N, which is not involved directly in the lithiation process, reduces stress at interfaces between the Si and CNT-N and the CNT-N and current collector.

View Article and Find Full Text PDF

A simple and effective method to remove pigments from heterologous secretory proteins expressed in Pichia pastoris.

Adv Biotechnol (Singap)

February 2024

CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.

Pichia pastoris is a popular yeast host for high-level heterologous expression of proteins on an industrial scale owing to its reliable expression, robust growth, high fermentation density, and easy genetic manipulation and cultivation at a relatively low cost. Of particular interest is its high secretion efficiency for small proteins including insulin, human serum albumin, vaccines, enzymes, and llama-derived heavy-chain only antibodies (nanobodies) for pharmaceutical and research applications. However, a recurring challenge in using P.

View Article and Find Full Text PDF

Lipid Levels and Lung Cancer Risk: Findings from the Taiwan National Data Systems from 2012 to 2018.

J Epidemiol Glob Health

January 2025

Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, No.7, Chung Shan S. Rd., Zhongzheng District, Taipei City, 100225, Taiwan.

Background: Lipids are known to be involved in carcinogenesis, but the associations between lipid profiles and different lung cancer histological classifications remain unknown.

Methods: Individuals who participated in national adult health surveillance from 2012 to 2018 were included. For patients who developed lung cancer during follow-up, a 1:2 control group of nonlung cancer participants was selected after matching.

View Article and Find Full Text PDF

Postoperative abdominopelvic adhesion and umbilical wound validation after single-port laparoscopy or two-port laparoscopy for gynecological surgery: a comparison with conventional laparoscopy.

Arch Gynecol Obstet

January 2025

Division of Minimally Invasive Surgery and Gynecological Laparoendoscopy, Department of Obstetrics and Gynecology, Gangneung Asan Hospital, University of Ulsan College of Medicine, 38, Bangdong-gil, Sacheon-Myeon, Gangneung-Si, 25440, Gangwon-do, Korea.

Purpose: The emergence of minimally invasive surgery has led to the development of laparoscopic surgery to reduce the number of ports. Although the incision for the umbilical port is sufficiently large, thus reducing the number of ports used during laparoscopic surgery, postoperative complications involving incisions at port sites have been reported. Thus, we analyzed postoperative intraperitoneal outcomes after laparoscopy by reviewing operation records and photographs of consecutive surgeries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!