Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5.

Nature

1] Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany [2] University of Hamburg, 22761 Hamburg, Germany [3] Center for Free-Electron Laser Science (CFEL), 22761 Hamburg, Germany [4] Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PU, UK.

Published: December 2014

Terahertz-frequency optical pulses can resonantly drive selected vibrational modes in solids and deform their crystal structures. In complex oxides, this method has been used to melt electronic order, drive insulator-to-metal transitions and induce superconductivity. Strikingly, coherent interlayer transport strongly reminiscent of superconductivity can be transiently induced up to room temperature (300 kelvin) in YBa2Cu3O6+x (refs 9, 10). Here we report the crystal structure of this exotic non-equilibrium state, determined by femtosecond X-ray diffraction and ab initio density functional theory calculations. We find that nonlinear lattice excitation in normal-state YBa2Cu3O6+x at above the transition temperature of 52 kelvin causes a simultaneous increase and decrease in the Cu-O2 intra-bilayer and, respectively, inter-bilayer distances, accompanied by anisotropic changes in the in-plane O-Cu-O bond buckling. Density functional theory calculations indicate that these motions cause drastic changes in the electronic structure. Among these, the enhancement in the character of the in-plane electronic structure is likely to favour superconductivity.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature13875DOI Listing

Publication Analysis

Top Keywords

nonlinear lattice
8
density functional
8
functional theory
8
theory calculations
8
electronic structure
8
lattice dynamics
4
dynamics basis
4
basis enhanced
4
superconductivity
4
enhanced superconductivity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!