High-quality protein crystals of suitable size are an important prerequisite for applying X-ray crystallography to determine the 3-dimensional structure of proteins. However, it is often difficult to obtain protein crystals of appropriate size and quality because nucleation and growth processes can be unsuccessful. Here, we show that by adsorbing proteins onto porous polystyrene-divinylbenzene microspheres (SDB) floating on the surface of the crystallisation solution, a localised high supersaturation region at the surface of the microspheres and a low supersaturation region below the microspheres can coexist in a single solution. The crystals will easily nucleate in the region of high supersaturation, but when they grow to a certain size, they will sediment to the region of low supersaturation and continue to grow. In this way, the probability of crystallisation and crystal quality can be simultaneously increased in a single solution without changing other crystallisation parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255177PMC
http://dx.doi.org/10.1038/srep07308DOI Listing

Publication Analysis

Top Keywords

crystal quality
8
protein crystals
8
high supersaturation
8
supersaturation region
8
low supersaturation
8
single solution
8
utilisation adsorption
4
adsorption desorption
4
desorption simultaneously
4
simultaneously improving
4

Similar Publications

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

Because of its dimensional characteristics, two-dimensional (2D) materials exhibit many special properties. The key to researching their features is to prepare high-quality larger-area monolayer 2D materials. Metal-assisted mechanical exfoliation method offers the possibility.

View Article and Find Full Text PDF

Enhanced Light-Matter Interaction with Bloch Surface Wave Modulated Plasmonic Nanocavities.

Nano Lett

January 2025

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China.

Strong coupling between nanocavities and single excitons at room temperature is important for studying cavity quantum electrodynamics. However, the coupling strength is highly dependent on the spatial light-confinement ability of the cavity, the number of involved excitons, and the orientation of the electric field within the cavity. By constructing a hybrid cavity with a one-dimensional photonic crystal cavity and a plasmonic nanocavity, we effectively improve the quality factor, reduce the mode volume, and control the direction of the electric field using Bloch surface waves.

View Article and Find Full Text PDF

The advancement of tin-based perovskite solar cells (TPSCs) has been severely hindered by the poor controllability of perovskite crystal growth and the energy level mismatch between the perovskite and fullerene-based electron transport layer (ETL). Here, we synthesized three cis-configured pyridyl-substituted fulleropyrrolidines (PPF), specifically 2-pyridyl (PPF2), 3-pyridyl (PPF3), and 4-pyridyl (PPF4), and utilized them as precursor additives to regulate the crystallization kinetics during film formation. The spatial distance between the two pyridine groups in PPF2, PPF3, and PPF4 increases sequentially, enabling PPF4 to interact with more perovskite colloidal particles.

View Article and Find Full Text PDF

Introduction: The use of urine cytobacteriological examination is a common and essential practice in medicine which helps guide therapeutic management in case of urinary tract infection. The cytological examination of urine samples can be done using the manual (microscopic) or automated technique. The automated approach, which involves the use of artificial intelligence, is faster, more reliable, and more efficient for laboratories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!