Recent advances in G-quadruplex (G4) studies have confirmed that G4 structures exist in living cells and may have detrimental effects on various DNA transactions. How helicases resolve G4, however, has just begun to be studied and remains largely unknown. In the present paper, we use single-molecule fluorescence assays to probe Pif1-catalysed unfolding of G4 in a DNA construct resembling an ongoing synthesis of lagging strand stalled by G4. Strikingly, Pif1 unfolds and then halts at the ss/dsDNA junction, followed by rapid reformation of G4 and 'acrobatic' re-initiation of unfolding by the same monomer. Thus, Pif1 unfolds single G4 structures repetitively. Furthermore, it is found that Pif1 unfolds G4 sequentially in two large steps. Our study has revealed that, as a stable intermediate, G-triplex (G3) plays an essential role in this process. The repetitive unfolding activity may facilitate Pif1 disrupting the continuously reforming obstructive G4 structures to rescue a stalled replication fork. The proposed mechanism for step-wise unfolding of G4 is probably applicable to other helicases that resolve G4 structures for maintaining genome stability.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20140997DOI Listing

Publication Analysis

Top Keywords

pif1 unfolds
12
repetitive unfolding
8
helicases resolve
8
unfolding
5
pif1
5
molecular mechanism
4
mechanism g-quadruplex
4
g-quadruplex unwinding
4
unwinding helicase
4
helicase sequential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!