This is the 11th installment of a series that will highlight one case per publication issue from the bank of cases available online as part of the American Society of Emergency Radiology (ASER) educational resources. Our goal is to generate more interest in the use of our online materials. To view more cases online, please visit the ASER Core Curriculum and Recommendations for Study online at http://www.aseronline.org/curriculum/toc.htm .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10140-014-1287-0 | DOI Listing |
Am J Kidney Dis
January 2025
Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
Renal tubular acidoses (RTAs) are a subset of non-anion gap metabolic acidoses that result from complex disturbances in renal acid excretion. Net acid excretion is primarily accomplished through the reclamation of sodium bicarbonate and the buffering of secreted protons with ammonia or dibasic phosphate, all of which require a series of highly complex and coordinated processes along the renal tubule. Flaws in any of these components lead to the development of metabolic acidosis and/or a failure to compensate fully for other systemic acidoses.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:
Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.
Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.
Anal Chim Acta
February 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:
Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.
Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).
Colloids Surf B Biointerfaces
January 2025
Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:
The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China. Electronic address:
Isothermal amplification-based nucleic acid detection technologies have become rapid and efficient tools for molecular diagnostics. Sequence-specific monitoring methods are crucial for isothermal amplification, as they help identify the occurrence of extended primer dimers, which can lead to false positive results. Fluorescent aptamers are promising tools for real-time monitoring of isothermal amplification but are inherently limited by thermostability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!