Predictors and prevention of flow insufficiency due to limited flow demand.

J Cardiothorac Surg

The Department of Cardiovascular Surgery, Saitama International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.

Published: December 2014

Background: We investigated the impacts of flow demand and native coronary stenosis on graft flow and patency.

Methods: We reviewed the angiograms of 549 bypass grafts in 301 patients who underwent off-pump coronary artery bypass grafting since 2007. Grafts consisted of 237 internal thoracic artery to left anterior descending artery; 97 internal thoracic artery and 52 saphenous vein grafts to left circumflex artery; and 109 gastroepiploic artery and 54 saphenous vein grafts to right coronary artery. We selected only individual bypass grafts created as the sole bypass graft to the coronary vascular region. Flow insufficiency was defined as ≤ 20 ml/min measured intraoperatively. When a significant difference in the incidence of flow insufficiency or "not functional" occurred between higher and lower values rather than the particular minimal luminal diameter value, the highest value was defined as the cut-off minimal luminal diameter. Distal lesions were defined as stenosis at segment #4, 7, 8, 12, 13, 14, or 15.

Results: Flow insufficiency was found in 112/549 (20.4%) bypass grafts. For internal thoracic artery to left circumflex artery grafts, the cut-off minimal luminal diameter for proximal and distal lesions was 1.25 mm and 0.75 mm, respectively. For gastroepiploic artery to right coronary artery grafts, the cut-off minimal luminal diameter was 0.82 mm for proximal lesions (p = 0.005), while 10 (71%) of 14 gastroepiploic artery grafts for distal lesions presented with flow insufficiency. Univariate and multivariate analysis identified a distal lesion (odds ratio (OR): 3.12, p < 0.0001); minimal luminal diameter greater than the cut-off value (OR: 3.64, p < 0.0001); right coronary artery (OR: 18.2, p = 0.0002) and left circumflex artery (OR; 2.29, p = 0.009) grafting; and a history of myocardial infarction in the grafted region (OR: 2.21, p = 0.02) as significant predictors of flow insufficiency.

Conclusions: Both competitive flow and insufficient flow demand cause graft failure. For distal lesions, more severe stenosis is necessary to avoid graft failure, compared with proximal lesions. A revascularization strategy for distal lesions should be discussed separately from that for proximal lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4264538PMC
http://dx.doi.org/10.1186/s13019-014-0188-3DOI Listing

Publication Analysis

Top Keywords

flow insufficiency
20
minimal luminal
16
luminal diameter
16
bypass grafts
12
artery
12
coronary artery
12
internal thoracic
12
thoracic artery
12
gastroepiploic artery
12
cut-off minimal
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!