Fundus autofluorescence mostly originates from bisretinoid fluorophores in lipofuscin granules, which accumulate in retinal-pigment-epithelium cells with age. The dynamics of accumulation, photo-oxidation, and photodegradation of bisretinoids during aging or in the presence of pathology have been insufficiently investigated. Changes in spectral properties and composition of human lipofuscin-granule fluorophores with age and pathology have now been investigated by a high-performance liquid chromatography method using spectrophotometric and fluorescent detectors connected in series. It was found that: (i) N-retinylidene-N-retinylethanolamine (A2E) fluorescence intensity is not predominant in the chloroform extract of human-cadaver-eye retinal pigment epithelium studied; bisretinoid photo-oxidation and photodegradation products have much higher fluorescent properties; (ii) the relative emission maximum in the fluorescence spectrum of suspended retinal-pigment-epithelium cells obtained from an individual human-cadaver eye without pathology is irrespective of donor age and falls within the range 575 ± 15 nm; in two cadaver eyes with signs of age-related macular degeneration, emission maxima were shifted by 23-36 nm towards the shortwave region; and (iii) the ratio of bisretinoid photo-oxidation and photodegradation products to unoxidized bisretinoids in the chloroform extract of cadaver-eye retinal pigment epithelium increases with donor age, from 0.69 ± 0.03 to 1.32 ± 0.04. The differences in fluorescence properties between chloroform extracts obtained from cadaver eyes with and without signs of age-related macular degeneration could be used to increase the potential of fundus autofluorescence imaging as a noninvasive diagnostic method.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-014-8353-zDOI Listing

Publication Analysis

Top Keywords

photo-oxidation photodegradation
12
changes spectral
8
spectral properties
8
properties composition
8
age pathology
8
fundus autofluorescence
8
retinal-pigment-epithelium cells
8
chloroform extract
8
retinal pigment
8
pigment epithelium
8

Similar Publications

The aqueous-phase conversion of phenolic compounds (PhCs) driven by nitrite photolysis has been recognized as a significant source of secondary brown carbon (BrC). However, the influence of pH on the conversion kinetics and product distribution of PhCs remains unclear. In this study, three representative PhCs with varying functional groups were selected to examine their aqueous-phase conversion kinetics in the presence of nitrite under different pH conditions and simulated sunlight conditions.

View Article and Find Full Text PDF

In the present study, biocomposite materials were created by incorporating biochar (BC) at rates of 1, 2.5, and 5 wt.% into a poly(butylene succinate) (PBSu) matrix using a two-stage melt polycondensation procedure in order to provide understanding of the aging process.

View Article and Find Full Text PDF

Study of Factors Affecting UV-Induced Photo-Degradation in Different Types of Polyethylene Sheets.

Polymers (Basel)

September 2024

Research Centre for Resources Engineering towards Carbon Neutrality, Research Institute for Intelligent Wearable Systems, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.

Enhancing the degradability of polyethylene plastics could provide a potential solution to the overwhelming crisis of plastic waste. Conventional studies have focused on the degradation of polyethylene thin films. This study investigated UV-induced photo-degradation according to ASTM D5208-14 in polyethylene sheets with thicknesses ranging from 0.

View Article and Find Full Text PDF

A multimodal spectroscopic approach is proposed to correlate the mechanical and chemical properties of plastic materials in art and design objects, at both surface and subsurface levels, to obtain information about their conservation state and to monitor their degradation. The approach was used to investigate the photo-oxidation of acrylonitrile butadiene styrene (ABS), a plastic commonly found in many artistic and design applications, using ABS-based LEGO bricks as model samples. The modifications of the chemical and viscoelastic properties of ABS during photoaging were monitored by correlative Brillouin and Raman microspectroscopy (BRaMS), combined with portable and noninvasive broad-range external reflection infrared (IR) spectroscopy and nuclear magnetic resonance (NMR) relaxometry, directly applicable in museums.

View Article and Find Full Text PDF

Histidine (His) photo-oxidation has been widely investigated with several transient and stable products characterized, especially for aerobic conditions. Due to its role and structure, His-side chain can be a key player in the quenching of excited states such as the triplet state of the photosensitizer 3-carboxybenzophenone (CB*). The capacity of His and its derivatives to quench CB* under anaerobic conditions are characterized in the current study by laser flash photolysis, with the resulting oxidation products examined by mass spectrometry to determine the reaction mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!