A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting European grass species. | LitMetric

Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting European grass species.

Ann Bot

Université de Caen Basse-Normandie, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, 14032 Caen Cedex, France INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, 14032 Caen Cedex, France Laboratoire d'Ecologie Alpine, UMR 5553 CNRS-UJF, Université de Grenoble, BP 53, F-38041 Grenoble Cedex 09, France Institute of Ecology, University of Innsbruck, Sternwartestr. 15, 6020 Innsbruck, Austria Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK Université de Caen Basse-Normandie, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, 14032 Caen Cedex, France INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, 14032 Caen Cedex, France Laboratoire d'Ecologie Alpine, UMR 5553 CNRS-UJF, Université de Grenoble, BP 53, F-38041 Grenoble Cedex 09, France Institute of Ecology, University of Innsbruck, Sternwartestr. 15, 6020 Innsbruck, Austria Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK.

Published: January 2015

Backgrounds And Aims: Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species' coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies.

Methods: Root uptake of [Formula: see text] and [Formula: see text], and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions.

Key Results: Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for [Formula: see text].

Conclusions: The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4284118PMC
http://dx.doi.org/10.1093/aob/mcu233DOI Listing

Publication Analysis

Top Keywords

functional traits
24
grass species
16
traits
12
leaf traits
12
relationships functional
8
leaf
8
leaf functional
8
root traits
8
uptake ability
8
[formula text]
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!