An elevated level of tumor necrosis factor-alpha in a cultural system of bone marrow erythroblastic islands was found. It was associated with the suppressed formation of erythroblastic islands de repeto in 24-hr cultures. In 48-hr cultures, an increased level of erythropoietin and intensive formation of erythroblastic islands de repeto and de novo was found. In 72-hr cultures, further elevation of TNF-alpha was accompanied by a decrease of erythroblastic islands in culture.
Download full-text PDF |
Source |
---|
Ann Anat
December 2024
Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan. Electronic address:
Background: Erythroid cells contribute to embryonic organ development and adult tissue repair supplying oxygen to tissues. During mouse development, the primitive erythroid cells produced in the extraembryonic blood islands of the yolk sac begin to circulate as immature and nucleated erythroblasts with the onset of cardiac contractions around embryonic day 9.5 (E9.
View Article and Find Full Text PDFJ Nutr
December 2024
Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States. Electronic address:
Background: Selenium (Se) is an essential trace element that exerts most biological activities through selenoproteins. Dietary selenium is a key regulator of red cell homeostasis and stress erythropoiesis. However, it is unknown whether the form and increasing doses of Se supplementation in the diet impact stress erythropoiesis under anemic conditions.
View Article and Find Full Text PDFGLTSCR1, a protein encoded by the Bicra gene, is a defining subunit of the SWI/SNF (also called mammalian BAF) chromatin remodeling subcomplex called GBAF/ncBAF. To determine the role of GLTSCR1 during mouse development, we generated a Bicra germline knockout mouse using CRISPR/Cas9. Mice with homozygous loss of Bicra were born at Mendelian ratios but were small, pale and died within 24 hours after birth.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
October 2024
Department of Medical Genetics and Developmental Biology, Basic Medical Science Academy, Air Force Medical University, Xi'an 710032, China. *Corresponding author, E-mail:
Erythroblastic islands (EBIs) are specialized structures that are formed by a central macrophage surrounded by maturating erythroblasts. The central macrophage mediates EBI formation and plays a crucial role in the proliferation, differentiation, enucleation, and maturation of erythroblasts. In stress erythropoiesis, the expression levels of several adhesion molecules mediating EBI formation become abnormal, leading to various erythroid diseases.
View Article and Find Full Text PDFJ Cell Sci
October 2024
Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC 3073, Australia.
Erythroid enucleation, the penultimate step in mammalian erythroid terminal differentiation, is a unique cellular process by which red blood cells (erythrocytes) remove their nucleus and accompanying nuclear material. This complex, multi-stage event begins with chromatin compaction and cell cycle arrest and ends with generation of two daughter cells: a pyrenocyte, which contains the expelled nucleus, and an anucleate reticulocyte, which matures into an erythrocyte. Although enucleation has been compared to asymmetric cell division (ACD), many mechanistic hallmarks of ACD appear to be absent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!