A 171ACS line (AABBDD, 2n = 6x = 42) has been crossed with the tetra- (AABB and AAGG, 2n = 4x = 28) and octoploid (AAAABBGG, 2n = 8x = 56) wheat species without the D genome, as well as with hexaploid (AABBDD and AAGGDD, 2n = 6x = 42) wheat species and tetra- (AADD, 2n = 4x = 28) and hexaploid (AADDSS, 2n = 6x = 42) amphidiploids that have the D genome. The inheritance of a novel type of spike branching in these obtained hybrid populations F1-F3 was studied. According to the results of a morphogenetic analysis of hybrid populations derived from crossings between 171ACS and wheat species without the D genome, the novel type of branching was found to be controlled by a single recessive gene (although a phenotype of the 171ACS line gives a handle for a doubt about occurrence of the second gene) and the 171ACS line is a source of gene of the novel type branching. However, not a single branched spike plant was observed in hybrid populations that were produced by crosses of the 171ACS line with wheat species, as well as with amphidiploids that have the D genome. This result also experimentally confirmed the inhibitor effect of chromosomes of the D genome on the expression of the spike-branching trait. The appearance of branched spike forms, together with normal spiked plants in hybrid populations of the 171ACS line and T. araraticum Jakubz. (AAGG) or T. fungicidum Zhuk. (AAAABBGG) confirmed that, as opposed to the D genome, neither genome G nor genome B demonstrated the inhibition of the expression of the spike-branching trait. In conclusion, keeping in mind that branching is exhibited in hybrid progenies obtained from crosses between the 171ACS line and wheat species with AABB and AAGG genomes, it can be said that this gene belongs to the A genome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7868/s0016675813110027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!