The age-related changes of the contractile and electrical responses of the fast (m. tibialis anterior) and slow (m. soleus) isolated skeletal muscles and their changes under acute hypoxia were estimated during the 16-20 days of the chick embryogenesis. For the first time, the contractile and electrical characteristics of these muscles were described in the specified period of embryogenesis. It was shown that the normalized values of the strength of single and tetanic contractile responses m. tibialis anterior significantly exceed these values for m. soleus. It is shown that the normalized values for the strength of the single and tetanic contractile responses in m. tibialis anterior significantly exceed the values for m. soleus. Using the extracellular microelectrodes (loose patch method) on incubation days 16-17, the slow decaying oscillatory excitation waves were registered in the muscle fibers of m. soleus and m. tibialis anterior, and the extracellular action potentials (APs) were registered in 20% of the investigated muscle fibers in m. tibialis anterior. On the developmental day 20 in fast muscles, the amount of muscle fibers, which were able to generate conductive AP, was about 100%, at the same time, it was about 50% in slow fibers. No significant differences in the amplitude-time characteristics of AP between m. soleus and m. tibialis anterior not observed. Under the results obtained, it is assumed that the muscles fast type principally involve in the chicken embryonic motility in normal and during acute hypoxia in the period of incubation from days 16 to 20. To study the mechanisms of change of muscle contractile responses in hypoxia, the influence of caffeine, insulin and ouabain was investigated. Hypoxia caused the decrease of the force of the muscles contractile responses on all studied stages of embryonic development (16-20 days), but did not impact the value of the contracture response caused by caffeine. Proceeding from this, we can conclude that in our conditions, hypoxia does not affect the functional state of the ryanodine receptors. Muscle treated with insulin and ouabain, significantly reduced sensitivity of the contractile responses to the action of hypoxia. It is assumed that membrane Na+, K(+)-ATPase actively particinates in the hypoxic effects.

Download full-text PDF

Source

Publication Analysis

Top Keywords

tibialis anterior
24
contractile responses
20
acute hypoxia
12
muscle fibers
12
isolated skeletal
8
skeletal muscles
8
contractile electrical
8
16-20 days
8
normalized values
8
values strength
8

Similar Publications

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

Background And Purpose: Throwing a baseball involves intense exposure of the arm to high speeds and powerful forces, which contributes to an increasing prevalence of arm injuries among athletes. Traditional rigid exoskeletons and rehabilitation equipment frequently lack portability, safety, ergonomic design, and affordability. Traditional rehabilitation approaches frequently require therapist monitoring, resulting in therapy delays.

View Article and Find Full Text PDF

Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ.

View Article and Find Full Text PDF

Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.

View Article and Find Full Text PDF

Introduction: Skeletal muscle satellite cells (MuSCs or stem cells) play a crucial role in muscle development, maintenance, and regeneration, supporting both hypertrophy and regenerative myogenesis. Syndecans (SDCs) act as communication bridges within the muscle microenvironment, regulating interactions with extracellular matrix components and contributing significantly to tissue repair and inflammation. Specifically, syndecan-4 (SDC4) is involved in muscle regeneration at multiple stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!