We have carried out a theoretical study to explain the photocatalytic performance of the newly synthesized special core (pure TiO2)-shell (heavily nitrogen (N)-doped TiO2) structure of TiO2 nanocrystal using advanced first-principles calculations. The conventional N doping models by maximizing the mutual distances between dopants are found to only introduce localized gap states irrespective of doping concentrations, which is in agreement with previous theoretical results but cannot explain the experimental results. In comparison, the electronically coupled N doping of TiO2, which is almost as stable as the conventional doping models and generally overlooked in previous works, can not only narrow the overall band gap but also decrease the carrier recombination rate. In particular, in the special core-shell structure of TiO2 nanocrystal, perfect type-II-like homojunction is formed, which can further decrease the carrier recombination rate. The present study conclusively accounts for the recent experimental results and indicates that the final electronic structures of doping system are very sensitive to the models used to conduct calculations, which can rationalize the distinct conclusions about N-doped TiO2 in previous theoretical works.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am506968h | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
Rib fracture-related infection is a challenging complication of thoracic trauma due to the difficulty of treating it with antibiotics alone and the need for a second operation to remove the infected fixator and sterilize the surrounding infected tissue. In this study, inspired by the photocatalytic performance of and ion release from silver-based materials, including AgPO and AgS, a hybrid AgPO-AgS heterojunction was prepared based on anion exchange and a one-step calcination process to design a nonantibiotic coating aimed at preventing and treating rib fracture-related infection with short-term 808 nm near-infrared irradiation. Calcination at 250 °C enhanced the inductive effect of the phosphate radical and led to the formation of a tight nanoheterogeneous interface between AgPO and AgS, thereby promoting interfacial electron transfer and reducing the recombination of photogenerated carriers.
View Article and Find Full Text PDFNanoscale
January 2025
Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.
Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.
To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.
View Article and Find Full Text PDFChemSusChem
January 2025
Indian Institute of Technology Ropar, Chemistry, Nangal Road, 140001, Rupnagar, INDIA.
Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones.
View Article and Find Full Text PDFLangmuir
January 2025
Key Laboratory of Thorium Energy, Chinese Academy of Science Shanghai Institute of Applied Physics, Shanghai 201800, China.
Hydrogen evolution from water, catalyzed by solar energy, is a promising yet challenging endeavor. Small-sized catalysts usually exhibit high utilization and high performance in the hydrogen evolution field. However, the high surface energy tends to make them aggregate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!